
      Research Division 
          Federal Reserve Bank of St. Louis 
                   Working Paper Series 
 

 
 
 

Why People Choose Negative Expected Return Assets - 
An Empirical Examination of a Utility Theoretic Explanation 

 
 
 
 

Nalinaksha Bhattacharyya 
and 

Thomas A. Garrett 
 
 
 
 

Working Paper 2006-014A 
http://research.stlouisfed.org/wp/2006/2006-014.pdf 

 
 
 

March 2006 
 
 
 
 

FEDERAL RESERVE BANK OF ST. LOUIS 
Research Division 

P.O. Box 442  
St. Louis, MO 63166 

 
______________________________________________________________________________________ 

The views expressed are those of the individual authors and do not necessarily reflect official positions of 
the Federal Reserve Bank of St. Louis, the Federal Reserve System, or the Board of Governors. 

Federal Reserve Bank of St. Louis Working Papers are preliminary materials circulated to stimulate 
discussion and critical comment. References in publications to Federal Reserve Bank of St. Louis Working 
Papers (other than an acknowledgment that the writer has had access to unpublished material) should be 
cleared with the author or authors. 



Page 1 of  24

Why People Choose Negative Expected Return Assets - An Empirical

Examination of a Utility Theoretic Explanation

Nalinaksha Bhattacharyya
 University of Manitoba

I.H. Asper School of Business
Winnipeg, Manitoba,R3T 5V4,Canada

(204) 474-6774
nalinaksha@gmail.com

Thomas A. Garrett
Federal Reserve Bank of St. Louis

P.O. Box 442
St. Louis, MO 63166-0442

(314) 444-8601
garrett@stls.frb.org

Abstract

Using a theoretical extension of the Friedman and Savage (1948) utility

function developed in Bhattacharyya (2003), we predict that for assets with

negative expected returns, expected return will be a declining and convex

function of skewness. Using a sample of U.S. state lottery games, we find that

our theoretical conclusions are supported by the data.  Our results have

external validity as they also hold for an alternative and more aggregated

sample of lottery game data.
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Utility theory has been the cornerstone for explaining economic choices

under risk and for understanding pricing in the asset market. Utility functions

commonly used are increasing and concave functions of wealth. Concave utility

functions are standard building blocks for developing the theory of decision

making under risk (for example see Huang and Litzenberger (1988) and

Ingersoll (1987)). Increasing and concave utility functions reflect diminishing

marginal utility of wealth and thus imply that the agent is risk adverse.

State lotteries are a class of  product in which participation cannot be

explained by the assumption of risk aversion since a risk averse agent will not



1 Source: National Association of State and Provincial Lotteries
(www.naspl.org). Commerical and Native American casinos generated roughly
$44 billion in revenue and parimutuel wagering revenues total $3.8 billion in
2003 (see www.americangaming.org).
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buy an actuarially fair lottery ticket, let alone a lottery ticket with a negative

expected return. On average, a lottery ticket returns about 50 cents to players

for a $1 wager. This relatively large negative expected return does not appear to

have reduced participation in state lotteries, however. For example, in the

United States, 41 states and the District of Columbia offer state lotteries. Fiscal

year 2004 sales totaled $48.5 billion ($184 per capita) and net lottery revenue

(sales minus prize payouts, retailer commissions, and administrative costs) to

the states amounted to $13.5 billion, or roughly 1.3 percent of total state

revenue in 2004.1

It is common that an individual will display simultaneous risk averse and

risk seeking behavior.  For example, the same agent might purchase insurance

(which is risk averse behavior) and purchase lottery tickets (which is risk

seeking behavior). Friedman and Savage (1948) posited that in order to

incorporate simultaneous risk aversion and risk seeking by economic agents,

the utility function of wealth should consist of a concave segment, followed by

a convex segment, followed yet again by a concave segment.  However, Quiggin

(1991) has shown that the conclusion of Friedman and Savage (1948) about the

third concave segment in the utility function is erroneous. The utility function

of an economic agent showing simultaneous risk aversion and risk seeking



2Bhattacharyya’s (2003) conjecture is inspired by Friedman and Savage
(1948)but there is an important difference between Bhattacharyya’s (2003)
conjecture and that of Friedman and Savage (1948). In Friedman and Savage
(1948) some distinct wealth levels are associated with the concave section of
the utility function while some other wealth levels are associated with the
convex section of the utility function. For an economic agent in Friedman and
Savage (1948), the wealth level determines whether the agent will act in a risk
averse manner or in a risk seeking manner.  In Bhattacharyya (2003), the
economic agent will always display risk averse behaviour for wealth below the
current wealth and will always display risk seeking behaviour for wealth above
the current wealth, i.e., the proposed utility function is always concave for
wealth below the current wealth and is always convex for wealth above the
current wealth.  As a numerical example, suppose we somehow determine that
the inflexion point in a Freidman-Savage utility function is at $10 million. In
Bhattacharyya (2003), the inflexion point will be at the current wealth level of
the economic agent and will be at different wealth levels for agents with
different endowments.
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behavior would therefore consist of a single concave segment and a single

convex segment.

Bhattacharyya (2003) put forward the conjecture that the utility function

of an economic agent is both concave and convex.  But, unlike Friedman and

Savage (1948) who assume the wealth level of an individual determines

whether the agent will act in a risk averse or a risk seeking manner, the utility

function proposed by Bhattacharyya (2003) is concave for wealth below the

current wealth of the agent and it is convex above the current wealth of the

agent.2  The shape of Bhattacharyya’s utility function is drawn in Figure 1. 

<<Figure 1 about here>>

An agent with such an utility function will simultaneously be a risk

averter as well as a risk seeker. Bhattacharyya (2003) finds that for an agent
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with such a utility function, the boundary of the opportunity set in the

expected return-skewness space is concave and downward sloping in

equilibrium.

In this paper we extend the theory developed in Bhattacharyya (2003) to

theoretically characterize the opportunity set for lotteries in the expected

return - skewness space and empirically test this theory using two different

data sets on U.S. state lottery games.  We find that for lottery games, the

boundary of the opportunity set in the expected return-skewness space is

downward sloping and convex.  The relationship is robust across the two data

sets.

The paper is organized in the following manner. In section 1, we briefly

review the literature.  Next, we extend the theory as enunciated in

Bhattacharyya (2003) and derive the shape of the opportunity frontier in the

expected return-skewness space when expected return is negative. In section 3,

we describe the data and develop the research design based on our theoretical

extension and then discuss our expected empirical findings.  We discuss the

results in section 4.  In section 5, we apply our theory to a smaller and more

aggregated data set in order to examine the robustness of our findings and also

to establish the external validity of our results.  Section 6 concludes. 



3 The work of Golec and Tamarkin (1998) has its basis in what is called
the “long shot bias” in horse or dog racing, where high-probability, low variance
bets provide relatively high average returns, and low-probability, high variance
bets provide relatively lower average returns. 
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1. Literature Review

An extensive literature exists that attempts to explain why risk averse

individuals participate in unfair gambles such as lottery games. The Friedman

and Savage (1948) model discussed earlier suggests that risk averse people

may indulge in unfair gambles if winning will significantly improve their

standard of living. Hartley and Farrell (2002) challenge the detractors of the

Friedman and Savage (1948) model (e.g. Bailey, Olson, and Wonnacott (1980) )

and rigorously show that the cubic utility functions can indeed explain why

risk averse individual participate in unfair bets. In a different approach,

Kahneman and Tversky (1979) suggest that players place decision weights on

the probabilities of each outcome. An over-weighting of low probabilities,

especially those associated with multi-million dollar jackpots, may explain the

attractiveness of state lotteries. Quiggin (1991) uses a rank-dependent utility

function to explain why individuals play lottery games. He theorizes that it is

utility maximizing to play the lottery if smaller prizes are offered besides the

jackpot.  Golec and Tamarkin (1998) argue that bettors’ behavior at horse

tracks can be explained by expected utility functions that not only consider the

mean and variance (risk) of returns, but also the skewness of returns.3 Bettors

are thus risk-averse, but are attracted to the positive skewness of returns
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offered by low probability, high variance bets. Garrett and Sobel (1999) extend

the work of Golec and Tamarkin (1998) to the case of lottery tickets. They find

empirical evidence that lottery players are risk averse but favor positive

skewness of returns. 

2. Extending the Theory

Bhattacharyya (2003) uses reductio ad absurdum to develop his theory

about the shape of the boundary of the opportunity set for assets in the

expected return- skewness space.  The basic argument is illustrated in Figure

2.

<<Figure 2 about here>>

The negatively sloped lines are the indifference curves in the expected

return-skewness space.  Utility increases as the indifference curves increase in

the north-easterly direction. A negatively sloped boundary for the opportunity

set allows the individual to hold the optimal asset at the tangency point of the

indifference curves with the boundary. Note that such tangency is not feasible

with any other shape of the boundary.  This has been Bhattacharyya's (2003)

argument in theorizing about the shape of the boundary.

Bhattacharyya's (2003) argument has been developed in the space where

the expected return is positive. In the present paper we are dealing with lottery

games which have negative expected returns.  Lottery games will generally be

negative expected return instruments to players because state governments

wish to generate revenue by selling lottery tickets.  In order to understand the
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shape of the opportunity boundary for lotteries in the expected return-

skewness space, we can conceptualize an agent as having two portfolios; one

consisting of positive expected return assets and the other consisting of

negative expected return assets. Therefore, we need to consider both the

positive and negative return directions in the expected return skewness space. 

This is done in Figure 3.

<<Figure 3 about here>>

We can see from Figure 3 that when the expected return in negative, the

shape of the boundary of the opportunity set in the expected return-skewness

space will be a negatively sloped convex curve. In equilibrium, the agent will

hold a portfolio of positive expected return assets and a portfolio of negative

expected return assets.  The portfolio of positive expected return assets will be

the point where the indifference curve is tangent to the opportunity frontier. 

The portfolio of negative expected return assets (e.g. lottery tickets) will be the

point where the same indifference curve intersects the opportunity frontier. 

The indifference curve thus has two common points with the opportunity

frontier - a tangency point in the positive expected return space and an

intersection point in the negative expected return space. In the current context

where we are discussing negative expected value assets like lottery games, the

testable conclusion is that for these assets the opportunity frontier in the

expected return-skewness space is a negatively sloped convex curve.



4 On-line games are those games that require the player to fill out a play
slip and watch the drawing on TV. Instant, or ‘scratch-off” games, are not
included. See Kearney (2005) for a detailed description of the data.  Our sample
of lottery games has 14,592 oberservations (we omitted missing observations
from Kearney’s (2005) 15,564 total observations).
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2
0 1 2

3 4

Expected Return  Skewness  Skewness
 Variance  Game Type

                             Year and State Dummies + 

β β β
β β

ε

= + +
+ +
+ (1)

3. Data and Research Design

We estimate several regressions to investigate whether that, for state

lotteries, the opportunity frontier in the expected return-skewness space is a

negatively sloped convex curve. In other words, we test whether the expected

return from lottery tickets is a declining and convex function of the skewness of

prize distributions. We should find that, for our sample of lottery games, the

slope of this function is negative and the second derivative of the function is

positive, thus reflecting the convexity of the opportunity set. 

To test our hypothesis, we obtained lottery game data from Kearney

(2005). Data include the skewness, expected return, variance, and other game

characteristics of 91 lottery games from 33 states over the period 1992 to 1999,

obtained on a weekly basis.  The data provided by Kearney (2005) are for on-

line lotto games.4  

Our empirical model is: 
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1 2Expected Return  2  Skewness
Skewness

β β∂ = +
∂ (2)

2

22 Expected Return 2  
Skewness

β∂ =
∂

(3)

1 2 22  Skewness 0 and 0β β β+ < > (4)

Game Type is a dummy variable that has a value of ‘1' if the top prize of

the lottery game is fixed and a ‘0' if the top prize is parimutuel (e.g. depends

upon ticket sales).  We include this variable to capture potential differences in

the prize structure of lottery games.  Expected Return is calculated as the

expected value minus one. We include state dummy variables to account for

unobserved demographic and state-specific lottery game characteristics. The

year dummy variables account for unobserved temporal changes that may have

influenced the structure of lottery games over time such as increased

competition from other lottery games and casino gaming, as well as changes in

players’ preferences.   Descriptive statistics for our key variables are shown in

Table 1. 

<<Table 1 about here>>

The slope of the curve in the expected return-skewness space is given by 

The second derivative of the function is given by

We therefore predict the following:
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4. Results

The results from four different regressions are shown in Table 2. The

coefficient on variance is positive and significant, reflecting the familiar risk-

return tradeoff. Game type has a positive and significant coefficient, thus

providing evidence that lottery games with fixed top prizes have, on average,

higher expected returns (about 18 percentage points from model (4)) than

lottery games with pari-mutuel top prizes. F-tests (not reported) reveal that the

year dummy variables are jointly significant at 1 percent in specifications (2)

and (4) and the state dummy variables are jointly significant at 1 percent in

specifications (3) and (4).

In accordance with our hypothesis, expected return is a declining and

convex function of skewness. The coefficients on skewness and the square of

skewness are significant at the 1 percent level. Using the mean value for

skewness (reported in Table 2), we find that the predicted first derivative of

expected return with respect to skewness is negative (e.g. β1 + 2*β2*mean

skewness < 0). We also find that the predicted first derivative of expected

return with respect to skewness is negative for all lottery games in our sample.

Our principle finding that expected return is a declining and convex function of

skewness is robust across all four empirical specifications.  

 <<Table 2 about here>>
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5. Checking for Robustness

We have conducted our investigation based on the data set from Kearney

(2005). We have found that our theoretical prediction of expected return for

lotteries being a declining convex function of skewness is corroborated by the

data.  In order to examine the robustness of our findings, we also apply the

theory to an empirical test using a different database. 

Garrett and Sobel (1999) aggregated data (annual basis) on the expected

return and skewness for about 200 U.S. lottery games in 1995.  The data set

provided by Garrett and Sobel (1999) only allows us to compute the expected

value and skewness for the top prize of each lottery game in the sample -

information on lower prize tiers is no longer available.  Nonetheless, an

empirical exercise identical to that presented earlier, but using the data set of

Garrett and Sobel (1999) rather than Kearney (2005), will serve as a robustness

check on the earlier empirical results.  The empirical results using the data set

of Garrett and Sobel (1999) are shown in Table 3.  As seen in Table 3, the

empirical results obtained from using the alternative data set of Garrett and

Sobel (1999) also reveal that expected return is a declining and convex function

of skewness. 

<<Table  3 about here >>
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6. Conclusion

In this paper we have developed and empirically tested a theory of the

relationship between the expected return and skewness of lottery games. The

testable implication of our theory is that expected return from a lottery game is

a decreasing and convex function of the skewness of the lottery game.  Our

empirical results support our theory.  We also find that our results are both

robust and show external validity as they also hold when we test it on a smaller

and more aggregated data setGarrett and Sobel (1999). 

There is a simple intuitive explanation for our results. Lotteries are

instruments with negative expected returns. So when people buy lottery

tickets, they are trading off negative expected returns for skewness.  Thus, if a

lottery game has a larger prize amount, then a buyer will be willing to accept a

lower chance of winning that prize.  This also explains why we see different

lottery games all priced at $1 but each having widely different top prize

amounts.  So there will be lottery games with top prizes of a few million dollars

and there will be lottery games with top prizes of a few thousand dollars.  Both

of these lottery games will be priced at $1 and both of these lottery games will

have buyers because people are trading off expected return for skewness.

Our paper contributes to the literature that investigates gambling as an

economic activity. Ali (1977)  examined race track betting and concluded that

"betting public behaves as risk lovers" (p.805)  Golec and Tamarkin (1998) and

Garrett and Sobel (1999) disputed this finding and concluded that gamblers
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prefer skewness. Our research suggests that the findings of these different

researchers can possibly be explained by a simpler framework-namely that

gamblers trade-off expected return for skewness.  An interesting area of future

research would be to examine racetrack betting using our framework. 

The trading off of expected return for skewness could also potentially

explain the co-existence of lotteries with other forms of gambling with higher

payouts. As for example, lotteries have an average payout rate of 50%

compared to the average payout rate of 81% for horse racing and 89% for slot

machines (Clotfelter and Cook (1991)). Further research is needed to examine

whether the trade off between expected return and skewness can explain the

co-existence of various gambling products with different payouts.

Donkers, Melenberg, and Van Soest (2001) examined whether variables

like age, income and wealth have any impact on the value function and

probability weighting function used in Prospect theory. Taking a cue from this

research, an interesting  direction for future research will be to examine

whether the tradeoff of expected return for skewness is influenced by personal

and/or demographic attributes.

Our research provides additional justification for using Friedman and

Savage (1948) utility functions in the expected utility framework. It should be

reiterated here that the testable predictions for this paper were generated 

using the modification of the Friedman and Savage (1948) type utility function

as developed in Bhattacharyya (2003).
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A related area of research will be to examine the relationship between

expected return and skewness in the stock market. McEnally (1974) found that

"(h)igh risk common stocks, it is frequently observed, do not appear to generate

returns commensurate with the level of associated risks"(p.199).  Possibly the

returns can also be better explained by consideration of the trade off between

expected return and skewness.  According to Bhattacharyya (2003), the

expected return for positive expected return assets like stocks, will be a

declining and concave function of skewness.  Such a research can extend the

results in Kraus and Litzenberger (1976)

Future research might also extend these results in the domain of another

major negative expected return product, namely insurance.  Another possibility

is to do an experiment to find whether subjects in an experimental setup

indeed make choices in line with our predictions in this paper. A third direction

would be extending these results to other gaming products such as casino

games.
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Figure 1:The Utility Function of Wealth

Note: The utility function proposed by Bhattacharyya (2003) is concave for
wealth below the current wealth and is convex for wealth above the current
wealth. The utility for the current wealth is at the point of inflexion for the
curve.
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Figure 2:Justification for a Concave Curve as the Boundary of the Opportunity
Set in the Expected Return-skewness Space. 

Note: The negatively sloped lines are the indifference curves. The thick concave
curve is the proposed boundary of the opportunity set. An agent will hold the
portfolio where the opportunity set is tangential to the indifference curve as
that portfolio position represents the highest attainable utility. We can see that
in this case different agents can hold different portfolios in equilibrium because
the slopes of the indifference curves can be different for different agents and
each agent then can have a distinct optimal portfolio. 



Page 21 of  24

Figure 3: Shape of the Boundary of the Opportunity Set in the Negative
Expected Return Space.
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Table 1 - Descriptive Statistics

Variable Mean Standard
Deviation

Minimum Maximum

Expected
Return

-0.4898 0.1367 -0.8767 -0.0044

Skewness 0.3195e+1
4

0.1511e+1
5

43,400,00
0

0.198e+16

Variance 1,204,934 3,624,592 2,087 37,200,000

Number of Observations = 14,592. Data are from Kearney (2005).
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Table 2: Regression Resultsa

 Variables (1) (2) (3) (4)

Constant -0.570***
(0.002)

-0.580***
(0.003)

-0.588***
(0.003)

-0.605***
(0.003)

Skewness 
(See Note b)

-0.121***
(0.008)

-0.133***
(0.008)

-0.153***
(0.009)

-0.173***
(0.01)

Skewness2

(See Note c)
0.341***
(0.027)

0.362***
(0.027)

0.396***
(0.027)

0.436***
(0.027)

Variance
(See Note d)

0.473***
(0.023)

0.519***
(0.023)

0.608***
(0.024)

0.687***
(0.024)

Game Type
(See Note e)

0.113***
(0.002)

0.114***
(0.002)

0.179***
(0.002)

0.187***
(0.002)

Year Dummies No Yes No Yes

State
Dummies No No Yes Yes

Adjusted R2 0.200 0.211 0.530 0.546

Observations 14,592 14,592 14,592 14,592

Breusch-
Pagan χ2 765.66*** 840.33*** 6542.55**

*
6840.35**

*
Notes: 
a). Dependent variable is expected return. Heteroscedasticity-corrected

standard errors in parentheses. *** denotes significance at 1 percent, ** at
5 percent, and * at 10 percent. Sample data from Kearney (2005). The
Breusch-Pagan χ2 tests Ho: homoscedasticity. 

b) Coefficients multiplied by 1014.
c) Coefficients multiplied by 1030.
d) Coefficients multiplied by 107.
e) ‘Game Type’ is a dummy variable having the value of ‘1’ if the top prize is

fixed and a ‘0’ if the top prize is pari-mutuel (i.e., a function of ticket
sales). 
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Table 3: Robustness Check  Regression Resultsa

Variable

Constant
-0.752***
(0.015)

Skewness 
(See Note b)

-0.222***
(0.068)

Skewness2

(See Note c)
0.454***
(0.121)

Adjusted R2 0.0376

Observations 209

Notes: 
a). Dependent variable is expected return. Heteroscedasticity-corrected standard

errors in parentheses. *** denotes significance at 1 percent, ** at 5 percent,
and * at 10 percent. Sample data from Garrett and Sobel (1999). Only data for
top prize and the odds of winning for each lottery was available and has been
used in this robustness check. Other independent variables used in the main
study (e.g., variance, game type, year and state dummies have not been used
here because of  data non-availability.

b) Coefficients multiplied by 1012.
c) Coefficients multiplied by 1025.


