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Preface 
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retraite. I am especially indebted to my thesis supervisor Thierry Post for helping me 
to push my research to a higher level. Our cooperation started during a meeting of 
the EWGFM on the beautiful island of Capri. Together with Martijn and our 
girlfriends, we had great fun during this conference and I especially remember the 
speedboat, champagne and cigars. Since then, my research focused on downside risk 
and empirical asset pricing. I appreciate your efficiency, brilliant ideas and work-
ethic and I feel very privileged working with you for such a long period. You always 
had time to help me out and responded to questions very quickly, irrespective of time 
or place. You are the co-author of most of my papers and taught me to be critical and 
to structure ideas in a logical way. I also remember the work-outs in the gym and the 
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 I am also grateful to Werner de Bondt who explained me some ‘mores’ in 
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Belgium humor cheered up the days we had contact. I would also like to thank Jaap 
Spronk. You have been a stable factor during the past four years, gave good advice 
and showed genuine personal interest. Next I would also like to thank the other 
members of the committee; Haim Levy, Marno Verbeek and Casper de Vries for 
evaluating this thesis. 
 During my PhD track I shared a room with Kevin Pak. We had lots of fun, did 
some ERIM courses together, shared the fridge and listened to music, preferably of 
Shirley Bassey. Further I would like to thank my fellow promovendi, most of them 
from the 16th floor: Martijn van den Assem ‘ik ben geciteerd!’, Guido Baltussen 
‘lekker knallen’, Reimer Beneder ‘je verdient zo een ton’, Klaas Beniers ‘is dat mijn 
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conservatief’, Dennis Fok ‘dat is toch makkelijk?’, Hans Haanappel ‘ik wil applyen’, 
Wilco van der Heuvel ‘IJsselvogels’, Patrick Houweling ‘ik ga long in vastgoed’, Joop 
Huij ‘het zijn de flows’, Jos van Iwaarden ‘goeiesmeurgens’, Erik Kole ‘Berlijn is fijn’, 
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Daina Konter ‘vrouwen zijn anders’, Joost Loef ‘heb je je Liebherr verkocht?’, Ivo 
Nobel ‘Bodegraven bravo!’, Klaas Staal ‘reizen is leuk’, Rutger van Oest ‘iedereen 
promoveert op yoghurt data’, Sandra Philippen ‘in een kerk geboren’, Remco Prins 
‘ja’, Jan-Frederik Slijkerman ‘ik spreek je straks’, Mariëlle Sonnenberg ‘waar is mijn 
portemonnee?’, Philippe Versijp ‘de staatsidee’, Björn Vroomen ‘lunch!’ and Amy 
Wong ‘echt waar?’. Further I would like to thank Dick van Dijk, Mathijs van Dijk, 
Anna Gutkovska, Winfried Hallerbach, Ben Jacobsen, Jedid-Jah Jonker, Roy 
Kouwenberg, Roger Lord, Wouter de Maeseneire, Ronald Mahieu, Martin Martens, 
Gerard Moerman, Erjen van Nierop, Mariëlle Non, Haikun Ning, Richard Paap, 
Michiel de Pooter, Igor Pouchkarev, Nico van der Sar, Marc Schauten, Stephen Smit, 
Onno Steenbeek, Rob Stevens and Yulia Veld. Many thanks to Marien de Gelder and 
Suzanne van der Tang for programming assistence to sort out the CRSP database. I 
am indebted to the staff of ERIM and the Finance department for excellent support: 
Trudy van Florestein, Wilfred Mijnhardt, Helene Molenaar, Betty Rietveld, Tineke 
van der Vhee and Daphne Willems. Thank you for letting me organize a rainy 
poldersport adventure and listening to my speeches. 
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like to thank Arian, Boy, Corne, Cornelis, Christoph, Dennis, Erik, Erik, Foppe, 
Hadrian, Hans, Jan, Joan, Johan, Jon, Koen, Leon, Marcel, Maarten, Martin, 
Martijn, Martijn, Navin, Patrick, Peter, Pieter, Ralph, Robert, Roel, Remon, Tammo, 
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for their unconditional love during my whole life. Thank you father for your inspired 
wisdom and thank you mother for all your support and prayers. Further, I would like 
to thank my three brothers Bert, Arjen, Hans, my special sister Margreet, and 
Wendy, Elsien, Cees, Julia and their children. Thank you for accepting me as a 
family member and listening to my attempts to explain my research in accesable 
terms. I thank my parents in law, Linetta and Marjolein for giving me a second 
family. Thank you sweet Sabine for sharing your life with me. You complete me in a 
beautiful way and I highly appreciate your committed love for me. Your encouraging 
faith and hope motivated me to go the extra mile. You have taught me many things 
such as windsurfing, and I consider you as a special gift from heaven. 
 Finally, I would like to thank my Father who gives me life through Jesus and 
inspires me through his Spirit. I am grateful for the talents and abilities I received 
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Chapter 1 

Introduction 

1.1 Purpose 
The last decades have witnessed some major developments in the field of asset 
pricing. These have contributed to a better understanding of stock, bond and other 
asset prices and have influenced other disciplines such as corporate finance and 
macro economics. Currently (2004), the Nobel prize winning Capital Asset Pricing 
Model (CAPM) of Sharpe (1964) and Lintner (1965) celebrates its 40th birthday. This 
seminal model is the most widely applied model in asset pricing. During the past 
decades, much progress has been made in the theoretical, methodological and 
empirical fields of asset pricing. First, several generalizations of the CAPM exist, 
each based on relaxing one of the main assumptions of the CAPM. Second, advanced 
econometric techniques and an increase in computer power have made it possible to 
handle large datasets and to control for several statistical issues. Third, high-quality 
financial databases have become available and the richness and precision of these 
databases is unmatched by other economic disciplines. 

Still, the CAPM faces some severe empirical difficulties. Specifically, Basu 
(1977), Banz (1981), Reinganum (1981), DeBondt and Thaler (1985), and Jegadeesh 
and Titman (1993) among others show that the CAPM fails to explain the returns of 
several equity investment strategies (e.g. based on accounting data or past returns). 
Some authors explain the failures of the CAPM with nonrisk-based explanations such 
as biases in the empirical methodology (e.g. Lo and MacKinlay (1990), MacKinlay 
(1995) and Kothari, Shanken and Sloan (1995)), or investor irrationality (e.g. 
DeBondt and Thaler (1987), Lakonishok, Shleifer and Vishny (1994) and Daniel and 
Titman (1997)), while others take a rational view and explain differences in return 
with differences in risk (e.g. Fama and French (1996), Cochrane (1996) and Lettau 
and Ludvigson (2001)).  

This research specially considers several empirical and methodological issues 
typical for asset pricing. We take a rational view and question CAPM’s use of 
variance as the relevant risk measure. Today there is substantial evidence that 
returns are typically not normally distributed and that investors are more sensitive 
to downside than to upside price movements. Alternative downside risk measures, 
such as semi-variance, may better describe investor preferences. Surprisingly, 
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despite the theoretical appeal of downside risk and the empirical problems of the 
CAPM, this line of research has not been thoroughly analyzed yet. 

The purpose of this thesis is to document the empirical performance of the 
CAPM and to examine if relaxing the preference assumptions of the CAPM can help 
to explain stock prices. This thesis has five distinguishing features. First, we pay 
special attention to adhering to first principles such as nonsatiation and risk 
aversion. Second, we are the first to apply recently developed non-parametric 
techniques on large scale datasets covering most of the 20th century. Due to 
methodological advances it is now possible to study a wide class of (downside) risk 
measures without having to parameterize the model in advance. Third, to the best of 
our knowledge, we are the first to model and empirically test time-varying downside 
risk aversion. We consider a simple model in which investors care more about 
downside deviations during economic recession periods than during economic 
expansion periods. Fourth, we construct benchmark portfolios that are specially 
designed for the analysis of downside risk. For statistical testing we use the 
Generalized Method of Moments (GMM), a unifying framework which embeds 
various regression techniques such as OLS and GLS as special cases. Fifth, the 
empirical analysis considers a large number of datasets and carries out many 
robustness checks. 

1.2 Variance as a risk measure 

 
 
The weak empirical performance of the CAPM may be explained by the limitation of 
the MV criterion. Roughly speaking, this criterion can only be applied if either 
investors have quadratic utility, or if asset returns are normally distributed (Tobin 
(1958) and Berk (1997)). In this section we shortly discuss that financial asset 
returns generally are not normally distributed and preferences of investors are 
generally not captured by the mean-variance criterion. 

1.2.1 Non-normal returns 
Table 1.1 shows the empirical monthly return distribution for a single stock, an 
industry stock portfolio and the value-weighted stock market index covering the 
January 1983 – December 2002 period. Clearly, the return series display asymmetry 

Lorie (1966, page 108) “I believe we will ultimately find an objective measure of 
sensitivity to decline which avoids the inherent absurdity of calling a stock risky because 
in the past it has gone up much faster than the market and only as fast in others, whereas 
we call a security that never varies in price not risky at all.” 
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and fat tails and mean and variance alone fail to describe asset returns. At the 
individual stock level we observe high variance combined with positive skewness and 
excess kurtosis. Variance is lower at higher aggregation levels, but the return 
distributions are still characterized by non-normalities. Interestingly, the return 
distributions become negatively skewed and maintain fat tailed. This means that 
large negative returns occur more often than expected under normality. Under 
normality, an observation more than 5 standard deviations from the mean (such as 
the stock market crash of October 1987) should be observed about once every 1 
million years. In fact such observations have happened more than once in the 20th 
century (e.g. during the 1930s). Not surprisingly, the Jarque-Bera (JB) test, which 
tests for normality, has to be rejected for all three series; all p-values are below 
conventional levels of significance.  
 

 
Serie s Avg Stde v Skew Kurt J B-te s t Dis tribution

Indiv idual Leve l:

AT&T Corp 0.53 8.33 0.27 1.81 0.00

Industry  Le ve l:

Telecom 0.65 5.77 -0.11 0.96 0.01

Market Leve l:

All-share index 0.58 4.53 -0.92 3.06 0.00
-30%  40%

S ource : CRSP month ly US stock return  da tabase (2002)  
 

Actually, the choice for monthly stock returns does not represent the most strongest 
case against normality, because other return intervals and other asset types also 
show violations of normality. For example, it is well-known that daily stock returns 
are leptokurtic (see Fama (1965)). Further, the returns of other asset types, such as 
corporate bonds (Ibbotson (2002)), derivates (Coval and Shumway (2001)) and foreign 
stocks/bonds (Dimson and Marsh (2001)), are characterized by asymmetry and fat 
tails. For these series, mean and variance also fail to completely describe the return 
distribution. 

Table 1.1
Financial asset return distributions 

This table shows some examples of return series of financial assets at an individual level, industry level 
and market level. The monthly return series cover the January 1983-December 2002 period (240 
months). Excess returns are computed from the raw return observations by subtracting the return on 
the one-month US Treasury bill. Besides descriptive statistics the p-value of the Jarque-Bera test 
statistic (JB-test) is displayed. The JB-test tests the null hypothesis of normal returns. 
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Interestingly, individual stocks are on average positively skewed, while 
portfolio returns are negatively skewed (for example Table I and Ang and Chen 
(2002)). The change in skewness sign is caused by an increase in correlation of stock 
returns during bear markets (Campbell, Koedijk and Kofman (2002)). Due to this 
asymmetric correlation, it is more difficult to diversify away downside risk than it is 
to destroy upside potential. An open research question is why individual stock 
returns are positively skewed and why correlations are stronger in downside 
markets. For example, positive skewness in individual stock returns may be caused 
by real option leverage (see Myers (1977), Knez and Ready (1997) and Smit and van 
Vliet (2002))and negative portfolio skewness may be caused by differences in opinion 
and short-sales constraints (Hong and Stein (2003)). However, in this thesis we take 
the empirical return distributions as given. 

1.2.2 Non-quadratic utility 
Since returns are non-normal, another way to justify the mean-variance criterion is 
by assuming a quadratic utility function. A quadratic utility function implies that 
investors care about mean and variance only, even if returns exhibit asymmetry or 
fat tails.  

Hanoch and Levy (1970) argue that quadratic utility is subject to some serious 
limitations. First, a quadratic function will ultimately become negative over some 
return interval. Put differently, a quadratic utility function could violate the 
nonsatiation condition. Nonsatiation is a very important property and underlies 
virtually all models of decision-making. Second, a quadratic utility function is 
inconsistent with decreasing absolute risk aversion (DARA). This implies that, all 
other things equal, individuals should prefer distributions that are right-skewed to 
distributions that are left-skewed (see Arditti (1967)). In fact, several financial 
studies suggest that investors display skewness preference, see Cooley (1977, 
Simkowitz and Beedles (1978), Scott and Horvath (1980), Kane (1982), Harvey and 
Siddique (2000) and Dittmar (2002). Further, a quadratic utility function fails to 
capture loss aversion (LA). Loss aversion means that individuals care much more 
about losses than gains. For example, Benartzi and Thaler (1995) and Berkelaar, 
Kouwenberg and Post (2005) demonstrate that loss aversion helps to better 
understand asset prices.  

In sum, a quadratic utility has several important limitations and may fail to 
describe investor preferences. Therefore, this study loosens this classical preference 
assumption and considers a wider range of alternative investor preferences. 
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1.3 Asset pricing theory 

1.3.1 Assumptions 

 
 
The CAPM is a single-period, representative investor, portfolio-oriented model of a 
perfect capital market. The literature proposes at least five ways to generalize the 
CAPM. We briefly discuss these generalizations and motivate our choice to stay close 
to CAPM’s assumptions and to adjust the investor preference assumption only.  
 First, the MV criterion is obtained either if one makes distributional 
assumptions (normal distribution), or if one makes investor preferences assumptions 
(quadratic utility). In this thesis, we take a preference-based perspective and 
interpret the MV-criterion in terms of a quadratic utility function. We do not make 
further distributional assumptions, because theory does not guide us to select the 
correct return distribution or the relevant moment(s) of this alternative return 
distribution. By contrast, investor preferences can be modeled in such a way that 
they obey the basic regularity conditions. These conditions impose that the utility 
function of the investor should be increasing and concave to reflect nonsatiation (NS) 
and risk aversion (RA). We will relax the quadratic utility assumption and consider a 
broader set of well-behaved utility functions. Relaxation of the preferences 
assumption has received relatively little attention compared to the other 
generalizations of the CAPM. 

Second, we use a single-period model. In reality, the portfolio-choice problem 
of investors may be better described by a multi-period model. The multi-period 
problem generally is more complex than the single-period problem, because the 
mean-variance efficient frontier changes through time and investors revise their 
portfolios accordingly. Merton's (1973) intertemporal capital asset pricing model 
(ICAPM) captures this multi-period aspect of financial market equilibrium. The main 
insight of the ICAPM is that the optimal portfolio must also provide the best hedge 
against unfavorable changes in the set of future investment opportunities. However, 
economic theory does not guide us which factors should be used to proxy for the 
future opportunity set. As a result the ICAPM is sometimes misused as a “factor 
fishing license” (see Fama (1991)). Further, even if we know the relevant factor, then 
we still do not know how to specify the relationship. For this reason, we maintain the 
single-period assumption.  

William Sharpe in Burton (1998): “The CAPM was a very simple, very strong set of 
assumptions that got a nice, clean, pretty result. And then almost immediately, we all 
said, let's bring more complexity into it to try to get closer to the real world.” 
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Third, we use portfolio-oriented models, which means that we assume that 
investors derive utility directly from portfolio returns. In reality however, investors 
derive utility from consumption of goods and services. Future consumption can be 
financed through cash-flows obtained from other sources than investment returns, 
such as return on human capital. The consumption-based CAPM (CCAPM, see 
Breeden (1979)) defines the utility function over future consumption. However, 
several empirical problems arise when using consumption data. For example, 
observed consumption data measure expenditures, not actual consumption. This may 
explain the poor empirical performance of consumption based asset pricing models 
(Breeden, Gibbons and Litzenberger (1989)). Further, aggregate expenditure data are 
not available at higher frequencies such as monthly or daily intervals. Although 
theoretically less appealing, we favor the use of portfolio-oriented models because of 
these empirical issues. 

Fourth, we assume the existence of a perfect capital market. This means that 
capital markets are frictionless (no transaction costs and securities are infinitely 
divisible) and market participants are price-takers, have costless access to 
information and face no taxes. Arguably, security markets come closest to the 
definition of a perfect capital market because there are many market participants 
who face low transaction costs, low absolute prices, few entrance barriers and have 
access to low-cost, high-quality information. Still, we are aware that some financial 
assets are illiquid (usually small caps) and some investment strategies involve high 
trading costs (such as momentum). Therefore, we mainly consider low-cost buy and 
hold investment strategies and put less emphasis on the small cap and/or momentum 
strategies. 

Fifth, we consider representative investor models. In these models all 
investors act in such a way that their cumulative actions might as well be the actions 
of one investor maximizing its expected utility function. Market equilibrium can be 
described as an optimization problem of a single investor who chooses an efficient 
portfolio. Alternatively, one may assume heterogeneity in investors borrowing 
constraints, income or preferences. We motivate our use of a representative investor 
model in three ways. First, by the assumption of complete markets which means that 
the complete set of future cash flows in future states-of-the-world can be constructed 
with existing assets. With complete markets a Pareto optimal outcome results, which 
means that all investors share risk perfectly (for a in-depth treatment of complete 
markets see Huang and Litzenberger (1988, Chapter 5)). Second, by the assumption 
that investors have sufficient similar preferences which means that investors may 
differ in several respects, but obey the same set of optimality conditions. For 
example, Rubinstein (1974)) shows that for a broad class of logarithmic and quadratic 
utility functions this result is found. Third, one can motivate the use of a 



Introduction  7 

CAPM

Preferences

Multiple-
Period 

Hetero-
geneity 

Market 
Imperf. 

Consumption

Figure 1.1: Generalizations of the CAPM

representative investor by the revealed preferences of (some) investors. Even though 
individual preferences of investors may differ substantially, many investors are 
interested in value-weighted market indexes. This is apparent from the popularity of 
passive mutual funds that track broad well-diversified portfolios (for example the 
S&P500 index). Hence it can also be seen as an attempt to rationalize the choice of 
the investors who hold the market portfolio. 

Figure 1.1 illustrates the five main generalizations of the CAPM which result 
from relaxation of the five different assumptions. Note that these relaxations can also 
be combined, for example alternative preferences with market imperfections. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

1.3.2 Risk-return relation 
Let us consider a non-satiable and risk averse representative investor who maximizes 
an increasing and concave utility function, u(R), by choosing how much to invest in 
several assets. The investment universe consists of a number of risky assets and a 
risk-free asset. The first-order condition, also known as the Euler equation, gives the 
necessary and sufficient optimality condition for this portfolio choice problem: 
 

( ) 0=mRE i       (1.1) 

 
where Ri is the excess return on asset i and m is the marginal utility function of the 
representative investor also known as the pricing kernel or stochastic discount factor 
(SDF). The marginal utility loss of buying a little more of one asset should equal the 
marginal utility gain of buying another asset. Thus the market portfolio is the 
efficient or optimal portfolio. The pricing kernel is an aggregate of the marginal 
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utility functions of all individual investors and is evaluated at the return of the 
market portfolio.  

We can re-write the Euler equation (1.1) into a more familiar beta 
representation. Applying the covariance decomposition gives: 

 

( ) ( )
( )mE
mR

RE i
i

,cov
−=      (1.2) 

 
we may multiply the right-hand side of this equation with 1)],)[cov(,cov( −mRmR MM  

and arranging terms gives a generalized version of the Security Market Line (SML):  
 

)()(
),cov(
),cov(

)( , MimM
M

i
i RERE

mR
mR

RE β==     (1.3) 

 
where E(Ri) is the expected excess return of asset i, βm,i is the kernel beta and E(RM) 
is the market risk premium. This equation simply states that assets that make the 
market portfolio (RM) more risky must promise a higher expected return to lure the 
representative investor to hold it. On the other hand, assets that reduce the risk of 
the market portfolio have a lower expected return. In equilibrium all assets should be 
priced according to their risk, i.e. they should all lie on the SML. The kernel beta is a 
generalization of the traditional CAPM market beta. Even complex multi-factor 
nonlinear kernels can be expressed in this single kernel beta representation. 
Interestingly, although the pricing kernel may be nonlinear, the risk-return relation 
(Equation 1.3) will always be linear. 
 The pricing kernel representation is currently very popular because a broad 
range of asset pricing models can be analyzed in this unifying framework. With a 
correctly specified pricing kernel, we know ‘the price of everything’. The CAPM 
specifies the pricing kernel as a linear function of market portfolio return: m=a+bRM. 
In this special case, the kernel beta (βm,) is identical to the traditional market beta 
(βCAPM). The linearity assumption of the pricing kernel is unnecessary and Cochrane’s 
quote nicely illustrates this point. Still, theory does not impose this exact 
specification of the functional form of the pricing kernel, but only gives some basic 
regularity conditions.  
 

 

John Cochrane (2001, page 169) ‘Why bother linearizing a model? …The tricks were 
developed when it was hard to estimate nonlinear models. It is clear how to estimate a 
beta and a market risk premium by regressions, but estimating nonlinear models used to 
be a big headache. Now, GMM has made it easy to estimate and evaluate nonlinear 
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1.3.3 Regularity conditions 
In this thesis we emphasize the need for imposing basic regularity conditions in order 
to guarantee economically meaningful results. Specifically we will consider three 
different regularity conditions: nonsatiation (NS), risk aversion (RA) and decreasing 
absolute risk aversion (DARA). More wealth makes the investor happier, but the 
increase in happiness declines at a decreasing rate with the wealth level. This means 
that the marginal utility function is a positive and decreasing and convex function of 
wealth. There are economical and mathematical arguments why these regularity 
conditions should be imposed. 
 Risk aversion (RA) is needed to ensure that the market portfolio is the optimal 
portfolio. In general, we observe risk aversion given the large insurance market 
(insurance premium) and the higher average returns on risky assets such as stocks 
(equity premium). Still, risk aversion is not a law of nature and there are also 
arguments to support (local) risk seeking. For example, Markowitz (1952) argues that 
the willingness to purchase both insurance and lottery tickets (the Friedman-Savage 
puzzle) implies that marginal utility is increasing for gains. However, a 
representative risk-seeking investor will not fully diversify because he likes risk. 
Assuming such preferences will not generate economically meaningful results 
because this investor will not hold the market portfolio in equilibrium. 

From a mathematical perspective, a decreasing marginal utility function is 
required in order to justify the approach of checking the first-order condition (Euler-
equation or SML). For a non-concave utility function the first-order condition is a 
necessary but nut sufficient condition for establishing a global maximum for expected 
utility; the first-order condition also applies for possible local optima and a possible 
global minimum. This important result is sometimes ignored when using non-concave 
utility functions. 
 The regularity conditions are of great help to impose structure on the 
functional form of the marginal utility function of the representative investor (the 
pricing kernel). In the portfolio-oriented model, we know that the pricing kernel is 
some function of market return: m=f(RM). With the regularity conditions we further 
know that f>0, f’<0, f’’>0, which means that the pricing kernel is a globally positive, 
decreasing and convex function of market return.  

Figure 1.2 shows a nonlinear pricing kernel specification as an alternative to 
the linear pricing kernel. This figure provides further insight in the regularity 
conditions and the possible violations. The linear kernel corresponds to the CAPM 
specification. We recall that the CAPM assumes that the pricing kernel is a linear 
function of market return. The curved kernel corresponds to a generalized version of 
the CAPM. Interestingly, the nonlinear pricing kernel obeys the three regularity 
conditions: NS, RA and DARA. By contrast, the linear pricing kernel violates the NS 
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condition for large market values. In the same spirit, Dybvig and Ingersoll (1982) 
demonstrate that the CAPM allows for arbitrage opportunities. Further, the linear 
pricing kernel does not display skewness preference and thus violates the DARA 
condition. We note that the nonlinear kernel is more flexible than the linear kernel to 
attach more weight to low probability events, such as market crashes. The next 
section, kernel specification, further discusses how alternative investor preferences 
can be modeled through a nonlinear pricing kernel. 
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1.4 Methodology 

1.4.1 Kernel specification 
In the previous section we discussed how nonlinear pricing kernels could better 
describe investor preferences, while adhering to the regularity conditions. In the 
asset pricing literature several nonlinear pricing kernel specifications have been 
proposed. 

First, some models add higher-order central moments such as skewness and 
kurtosis to the mean-variance framework. Kraus and Litzenberger (1976) propose a 
quadratic kernel and Bansal, Hsieh and Viswanathan (1993) consider higher order 
polynomials. The higher order kernels seem especially suited for modeling risk-
seeking (f’>0) rather than downside risk aversion. For example, Dittmar (2002) shows 
that a cubic increasing pricing kernel, which allows for risk seeking (f’>0), gives the 
best empirical fit. However, as discussed in section 1.3.3, regularity conditions, the 

Figure 1.2: Linear and nonlinear pricing kernel. This figure shows a linear pricing kernel (black line) 
and a nonlinear curved pricing kernel (grey line). The linear kernel (CAPM) violates the nonsatiation 
(NS) condition during market booms and does not display decreasing absolute risk aversion (DARA). 
The curved kernel (grey line) obeys all three regularity conditions: NS, risk aversion and DARA.  
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pricing kernel should be positive and decreasing. In this spirit, Levy, Post and van 
Vliet (2003) show that the first order conditions (Equation 1.1) do not necessarily 
hold for a (locally) increasing quadratic pricing kernel. Stated differently, a risk 
loving investor does not fully diversify because this disproportionally destroys upside 
potential. 

Second, Bawa and Lindenberg (1977) propose the general class of lower 
partial moment (LPM) kernels. A special case of the LPM nonlinear kernels is the 
Mean-Semivariance (MS) CAPM (Hogan and Warren (1974)). The MS CAPM replaces 
variance by semi-variance and regular beta by downside beta as the relevant risk 
measure. Interestingly, contrary to the MV CAPM, the MS CAPM has received much 
attention. An attractive feature of the LPM kernels is that they by definition obey the 
basic regularity conditions of nonsatiation and risk aversion. This makes this class of 
nonlinear kernels especially suited for analyzing downside risk. 

In general, there is always the chance of kernel misspecification because 
economic theory only gives minimal guidance on how investor preferences should be 
modeled. An alternative approach is to use the rules of Stochastic Dominance (SD). 
With SD rules the researcher puts minimal structure on the investor preferences in 
order to let ‘the data speak for themselves’. The strength of the non-parametric 
approach is that it considers all kernels that obey the regularity conditions. A 
positive kernel corresponds to (FSD), a positive and decreasing pricing kernel 
corresponds to second-order SD (SSD) and a positive, decreasing and convex kernel to 
third-order SD (TSD). Recently, Post (2003) derived computationally tractable 
empirical tests for SSD efficiency of a given portfolio. This test cleared an important 
hurdle for practical implementations of SD rules (see quote Haim Levy). With this 
new test, Post and van Vliet (2004a) find that the value effect can be rationalized in 
the 1978-1998 period. The weakness of the SD approach is that it does not directly 
test a particular asset pricing model, but rather a class of asset pricing models. In my 
opinion, the recently developed SD methodology serves as a helpful and rigorous 
‘screening device’ and indicates whether well-behaved nonlinear kernels exist that 
better explain asset prices than linear kernels. 
 

 

Haim Levy (1992, p.583) ‘Ironically, the main drawback of the SD framework is found in 
the area of finance where it is most intensively used, namely, in choosing the efficient 
diversification strategies. This is because as yet there is no way to find the SD efficient set 
of diversification strategies as prevailed by the MV-framework. Therefore the next 
important contribution will be in this area.’ 
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1.4.2 Statistical inference 
In this section we will discuss how the central pricing equation can be empirically 
tested. Different approaches exist for asset pricing model evaluation. In general, the 
pricing kernel is specified in such a way to minimize the pricing errors and then the 
model is evaluated by examining how large those errors are. The pricing errors, or 
alphas are the empirical deviations from the central pricing equation. 
 Since the early tests of the CAPM, the asset pricing methodology has evolved 
substantially (Fama and French (2003)). In the early 1970s, cross-sectional OLS 
regressions (e.g. Fama and MacBeth (1973, FM)) and time-series OLS regressions 
(e.g. Black, Jensen and Scholes (1972)) where used to test the CAPM. Soon 
afterwards, it was recognized that various statistical problems such as 
heteroskedasticity and dependency in the errors should be resolved. An important 
refinement of the time-series methodology was made by Gibbons, Ross and Shanken 
(1989, GRS) who proposed a multi-variate test statistic. Currently, the Generalized 
Method of Moments (GMM) framework (for a discussion see textbooks of Campbell, 
Lo and MacKinlay (1997) and Cochrane (2001)) is popular, because it embeds a broad 
range of statistical estimation methods, including cross-sectional regressions (FM) 
and multi-variate time-series regressions (GRS). Additional attractive features of 
GMM framework are (1) sufficiently flexible to handle a broad range of linear and 
nonlinear kernels (2) place restrictions on the pricing kernel to obey the regularity 
conditions and (3) solve the “errors in variables” problem by estimating the risk 
premium and kernel beta simultaneously. 

While we cast our parametric asset pricing tests in the GMM framework, the 
non-parametric asset pricing methodology is very young and still under development. 
In general, empirical SD-efficiency tests are somewhat less powerful, that is, they 
have a lower probability of correctly rejecting the null-hypothesis. This thesis uses 
the recently developed Post (2003) test. At the time of writing (October 2004), Post 
and Versijp (2004) cast the SD test in a more powerful GMM-framework. We expect 
further developments in this area with possible applications for a broader base of 
representative agent models (e.g. FSD tests and conditional SD tests). 

1.5 Empirics 

 

Eugene Fama (by Roger Ibbotson, 2000): ‘I bill it [finance] as the most successful area of 
economics. The development of the theory, empirical work and computers all joined 
together to make an explosion of work in this area. We are advantaged relative to other 
areas of economics because data on markets are much easier to get.’ 
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The financial researcher faces some empirical issues before the central pricing 
equation can be tested in practice. This section motivates a number of empirical 
choices made in this thesis. 

1.5.1 Return data 
We consider monthly returns of U.S stocks as a proxy for the investment universe 
and use the 1-month T-bill rate as a proxy for the risk free rate. The stock returns are 
obtained from the Center for Research in Security Prices (CRSP) at the University of 
Chicago and the T-bills are obtained from Ibbotson. 

The choice for a monthly return interval reflects the trade-off between (1) the 
sampling error of a sufficiently large sample and (2) a realistic evaluation horizon. 
Increasing the return interval (e.g. yearly) would lead to small dataset, while 
decreasing it (e.g. daily) to an unrealistically short evaluation horizon. Further, the 
use of high-frequency data introduces several micro-structure problems such as the 
bid-ask bounce which tend to distort the empirical results. Therefore we adhere to 
the common approach of using monthly returns. 

Today, we have about forty years of out-of-sample data available since the 
first empirical tests of the CAPM. The quality of the CRSP database has improved 
and the number of assets covered has also substantially increased. We employ 
common U.S stocks because the CRSP database covers a long time period (1926-
2002), includes market capitalization information and is very clean. It is free of the 
survivorship bias and delisting bias and contains a minimum of typos and missing 
values due to frequent backfilling updates. We study an extended sample period 
including the bear markets of the 1930s (see quote de Bondt) 1970s and early 2000s. 
We use the value-weighted average of all stocks as a proxy for the market portfolio. 
Unfortunately, to the best of our knowledge, no comparable databases exist which 
include price information for other asset classes and/or non-US financial assets, yet. 
Construction of new bias-free databases, including non-equity and non-US assets 
which cover a long sample period, will certainly be helpful to the field of empirical 
asset pricing. 
 

 

1.5.2 Benchmark portfolios 
In this thesis, we group stocks into a small set of benchmark portfolios based on one 
or more characteristics, for example historical beta or size (market capitalization). 

Werner de Bondt (Antwerp 2004): ‘Some financial researchers exclude the observations of 
the 1930s from their analysis. This is similar to throwing out all the divorces from the 
sample when studying happiness in marriages… ’ 
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The number of benchmark portfolios varies from 10 for a single sort and 100 for a 
double sort on two characteristics. 

There are a few reasons why we group assets into portfolios. First, a frequent 
rebalancing procedure generates portfolios with stable characteristics. For example, 
an individual stock may wander through time from low beta to high beta, while beta-
sorted portfolios always contain firms with similar betas and as a result have more 
constant betas. Second, a smaller set of portfolios gives a more reliable estimate for 
the joint return distribution, because with a large number of assets an extremely 
large number of time-series observations is needed. Third, a multiple-sorting routine 
proves particularly helpful to disentangle correlated characteristics. For example, 
small stocks tend to have higher downside betas, thus by sorting on size first and 
subsequently on downside beta helps to unravel these two effects. 

In our analyses, we put more emphasis on portfolio sorts based on stock 
characteristics that are unrelated to the outcomes of prior empirical research such as 
regular beta, downside beta or industry classification. Therefore our results are less 
sensitive to the datasnooping issues as discussed by Lo and MacKinlay (1990). 

1.5.3 Time-varying risk 
There is substantial evidence that investor preferences and return distributions are 
time-varying and not constant in time. In the spirit of the habit utility models 
(Campbell and Cochrane (1999)) the CAPM can be specified and tested in a 
conditional way to capture the time-varying nature of risk. The failure of the CAPM 
may be caused because this dynamic aspect of risk is ignored in an unconditional 
empirical specification. In fact, there seems to be empirical evidence which suggests 
that (1) the relative risk of assets and (2) the risk premia change through time. To 
some extent the risk premia tend to vary with the business cycle, reflecting a higher 
risk aversion and therefore higher risk premiums in recession periods (e.g. 
Jagannathan and Wang (1996) and Lettau and Ludvigson (2001)). 

However, the use of a conditional model introduces a serious risk of 
specification error. In order to describe the time varying relation one needs to choose 
a specific variable to proxy for the state-of-the-world (e.g. dividend yield) and to 
specify a particular relation (e.g. linear). Ghysels (1998) argues that this relation may 
also change over time and shows that this mis-specification often results in larger 
pricing errors. To address this issue we will consider several conditional variables 
and cross-validate our results with split-sample analyses. 

Another serious risk of conditioning is that the regularity conditions (section 
1.3.3) are violated. Wang and Zhang (2004)) show that conditional kernels often take 
large negative values; this means a violation of nonsatiation. Further, the analysis of 
Lewellen and Nagel (2004)) indicates that in typical empirical tests of conditional 
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asset pricing models, implausible risk premiums imply violations of risk aversion. 
Therefore we use a new approach, pioneered in this thesis, which puts additional 
restrictions on the pricing kernel, which ensures us that the pricing kernel obeys the 
regularity conditions. We explain this in more detail in Chapter 4. 

1.6 Outline 
The second chapter investigates the empirical performance of the CAPM compared to 
some well-known multi-factor extensions. We cast the asset pricing tests in a GMM 
framework to control for the statistical problems and special attention to the portfolio 
formation procedures. We construct a large number of benchmark sets covering a 
long sample period and control for market capitalization. The third chapter 
investigates a large number of well-behaved kernels in a non-parametric fashion. In 
this chapter we apply the recently developed empirical tests for SD efficiency on some 
well-known datasets. We test if the high returns on small, value, winner stocks can 
be explained by other return moments than variance alone. The fourth chapter tests 
the mean semivariance CAPM, where regular beta is replaced by downside beta. 
Surprisingly, this model has not been rigorously tested due to methodological and 
empirical problems. The MS CAPM is evaluated in a GMM framework and we impose 
the regularity conditions. To better understand downside risk, we construct portfolios 
based on downside beta and we also carry out conditional tests to capture the time-
varying aspect of risk. The final chapter offers a conclusion. 
 
 





 

Chapter 2 

Do multiple factors help or hurt?1 

 

2.1 Introduction 
CONCERNS ABOUT THE EMPIRICAL VALIDITY OF THE SINGLE-FACTOR CAPM explain 
much of the current popularity of multifactor asset pricing models. Various empirical 
studies suggest that the stock market portfolio is highly and significantly mean-
variance inefficient relative to portfolios formed on stock characteristics such as 
market capitalization (size), book-to-market-equity ratio (BE/ME) and price 
momentum. In response to these findings, several multifactor models have been 
developed. Currently, the most popular models are the three-factor model (3FM; 
Fama and French (1993) and Fama and French (1995)) and the four-factor model 
(4FM; Carhart et. al (1996) and Carhart (1997)). 
 The economic rationale behind the multifactor models is not entirely clear. 
The models can be motivated and interpreted with various different theoretical 
alternatives to the CAPM, ranging from Merton’s (1973) ICAPM to Ross’ (1976) APT. 
Nevertheless, from an instrumentalist perspective, the empirical performance of 
these models may be regarded as more important than the precise theoretical 
underpinnings. Surprisingly, the existing empirical studies that analyze the single-

                                                 
1 This chapter is based on the paper titled: ‘Do multiple factors help or hurt?’ by Post and van Vliet 
(2004d). This paper can also be found at: http://ssrn.com/abstract=582101 

ABSTRACT: This chapter compares the single-factor CAPM with the Fama and French 
three-factor model and the Carhart four-factor model using a broad cross-section and long 
time-series of U.S stock portfolios and controlling for market capitalization. Confirming 
known results, multiple factors help for value and momentum portfolios in the post-1963 
period, most notably for the small cap market segment. However, multiple factors 
generally do not help or even hurt (1) in the pre-1963 period, (2) for size, beta, reversal, 
and industry portfolios and (3) within the large cap market segment. These empirical 
findings support the data snooping hypothesis or other non-risk based explanations such 
as high transaction costs and low market liquidity for small caps. 
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factor or multifactor models are far from decisive on the added value of multiple 
factors.  
 Existing studies typically consider a relatively narrow cross-section of size, 
BE/ME (or other related multiples) and momentum based portfolios and a short time-
series of post-1963 data. This approach introduces the risk of data snooping, because 
the empirical problems of the CAPM for this type of data were known prior to the 
formulation of the multifactor models (see also Lo and MacKinlay (1990)). For this 
reason, it would be useful to cross-validate the existing results with other cross-
sectional effects, including the pre-1963 period. 
 Further, existing studies do not always control in a satisfactory way for the 
size of the stocks under evaluation. The small caps generally involve relatively low 
market liquidity and high transaction costs. Transaction costs decrease with firm size 
due to more favorable (1) bid-ask spreads, (2) commission fees and (3) price impact of 
trade for large caps. With a new measure which incorporates all three effects, 
Lesmond, Ogden and Trzcinka (1999) estimate the round-trip transaction costs to be 
1.2 percent for largest decile stocks and 10.3 percent for smallest decile stocks 
(NYSE/AMEX stocks, 1963-1990). Similarly, Pastor and Stambaugh (2003) show that 
stock liquidity increases with size. Due to these microstructure problems, the results 
for small caps may have less economic significance and practical relevance to 
investors than the results for large caps. For this reason, it is interesting to analyze 
the interaction of size with the other cross-sectional effects, again including the pre-
1963 period. 
 Several studies suggest that the sample period and size segment are 
important for judging the empirical validity of the CAPM. For example, Loughran 
(1997) shows that a substantial portion of the BE/ME effect is driven by the low 
returns of small newly-listed growth stocks. Further, Ang and Chen (2003) Ang and 
Chen (2003)show that the BE/ME effect disappears in the pre-1963 period. However, 
these studies do not consider the combined effect of the benchmark set, the sample 
period and the size segment. Also, these studies focus on the CAPM and do not 
directly address the issue of the added value of multiple factors. Similarly, studies 
that focus on multiple factor models without analyzing the CAPM, such as Davis, 
Fama and French (2000) also cannot determine the added value. 
 The purpose of this chapter is to systematically analyze the empirical 
performances of the CAPM and the multifactor models (3FM and 4FM) using a broad 
cross-section and a long time-series of stock portfolios and controlling for size. We 
employ benchmark portfolios based on beta, reversal and industry in addition to the 
typical size, BE/ME and momentum portfolios. Further, we analyze the pre-1963 
period in addition to the typical post-1963 period. To control for size, we construct 
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size-based double-sorted portfolios and analyze multifactor efficiency within each size 
segment separately.  
 Our main findings (summarized in Table 2.1) are remarkable given the 
current popularity of multifactor models. Most notably, multiple factors do not 
significantly improve the fit for size, beta and reversal portfolios. Also, there are no 
improvements for BE/ME portfolios in the pre-1963 period and in the large cap 
segment, roughly 80% of the total stock market capitalization. Further, multiple 
factors significantly worsen the fit for industry portfolios and for large cap 
momentum portfolios. Combined with the weak theoretical underpinnings, these 
findings lead us to seriously question the use of multifactor models. 
 

 
Characteristic Period Size  

Segment  CAPM 3FM 4FM  Help or hurt? 

Size 1931-1962 All  0.95 0.96 0.80  - 
BE/ME 1931-1962 All  0.34 0.27 0.65  - 
Momentum 1931-1962 All  0.01 0.00 0.36  Help 

Beta 1963-2002 All  0.21 0.21 0.15  - 
Reversal 1963-2002 All  0.73 0.99 0.75  - 
Industry 1963-2002 All  0.54 0.02 0.03  Hurt 

BE/ME 1963-2002 Large  0.46 0.31 0.37  - 
Momentum 1963-2002 Large  0.12 0.01 0.01  Hurt 
Beta 1963-2002 Large  0.37 0.93 0.98  - 
Reversal 1963-2002 Large  0.44 0.95 0.39  - 
Industry 1963-2002 Large  0.16 0.00 0.01  Hurt 

 
Our empirical results complement the theoretical results of MacKinlay (1995). He 
demonstrates that omitted risk factors are unlikely to cause large deviations from the 
CAPM and that non-risk based explanations, including data-snooping, are more 
likely to yield large deviations. In contrast to MacKinlay, we use a purely empirical 
approach, showing that the violations of CAPM and the improvements from using 
multiple factors are not robust with respect to the choice of the sample period and the 
set of benchmark portfolios. These findings are consistent with the datasnooping 
explanation as well as with other non-risk based explanations, such as transaction 
costs and market liquidity for the small cap stock market segment. 
 This chapter proceeds as follows. Section 2.2 motivates and explains our 
methodology. Next, Section 2.3 explains our procedure for selecting stocks and 
forming benchmark portfolios. Section 2.4, describes and compares the performance 

Table 2.1
Summary of test results 

This table summarizes the outcomes of our GMM test for multifactor efficiency. Specifically, it shows the 
p-value associated with the null that the alphas are jointly equal to zero. Section I and II give further 
details about the data and methodology use to arrive at these results. P-values below the significance 
level of 10% are highlighted. 

Formatted: Font: 9 pt
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of the CAPM and multifactor models relative to the different benchmark sets, the 
different time periods and different size segments. Finally, Section 2.5 summarizes 
our findings and gives suggestions for further research. 

2.2 Methodology 
Since the early time-series tests (see for instance Black, Jensen and Scholes (1972) 
and cross-sectional tests (see for instance Fama and MacBeth (1973)) the empirical 
asset pricing methodology has evolved substantially. In this chapter, we will use the 
pooled time-series-cross-section framework of Generalized Method of Moments 
(GMM) (see e.g. MacKinlay and Richardson (1991)). Currently, this framework is 
popular, because it can resolve various methodological problems associated with the 
early tests, such as heteroskedasticity and correlation for the alphas (see below).  
 The three models analyzed in this chapter (CAPM, 3FM, 4FM) all link the 
excess return on a set of risky assets Nrr ,,1 L  to the returns on a set of orthogonal 

factor-mimicking portfolios (or factors) Kff ,,1 L . In the CAPM, the only relevant 

factor is the excess market return. The 3FM introduces two additional factors, the 
“Small Minus Big” (SMB) hedge portfolio return and the “High Minus Low” (HML) 
hedge portfolio return, and the 4FM further adds the “Winner Minus Loser” (WML) 
hedge portfolio return as a factor. These additional factors are intended to capture 
common non-market risk factors that are related to size, BE/ME and momentum. 

The equilibrium condition for the general multifactor model is given by the 
following risk-return relationship: 
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with ][/],[ jjiij fVarfrCov≡β  for the factor risk loading of the i-th asset for the j-th 

factor and ][ jfE  for the j-th factor risk premium. In words, the expected excess return 

of every asset ][ irE  should equal the sum product of the asset’s factor risk loadings 

and the factor risk premiums. In this case, the market is said to be multifactor 
efficient. 
 In practice, we cannot directly check multifactor efficiency, because the return 
distribution of the assets and factors is unknown. However, we can estimate the 
distribution using time-series observations for the assets and factors and employ 
statistical tests to determine if the equilibrium condition (2.1) is violated to a 
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statistically significant degree. We will represent the return observations for the 
assets and the factors by iTi rr ,,1 L  and jTj ff ,,1 L  respectively.  

 Using the observations, we can compute the following empirical deviations 
from the equilibrium condition (2.1) or pricing errors: 
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with ir  for the sample return mean of the ith asset, ijβ̂  for the sample risk loading of 

the ith asset for the j-th factor and jf  for the sample risk premium of the jth factor. 

To test multifactor efficiency, we need to test if the alphas are jointly significantly 
different from zero.2 For this purpose, we can aggregate the individual alphas with 
the following test statistic: 
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with isw , Nsi ,,1, L= , for properly chosen weights. Assuming that the observations are 

serially independently and identically distributed (IID) random draws, the JT test 
statistic (3) obeys an asymptotic chi-squared distribution with N degrees of freedom. 3 
If we set 1=isw  if si =  and 0=isw  otherwise, then the JT statistic reduces to the sum 

of squared errors used in OLS regressions. This is a good weighting scheme if the 
alphas are homoskedastic and independent. However, other weighting schemes are 

                                                 
2 Multifactor asset pricing models should not be judged based on their ability to explain time-series 
return variations, measured by for example the R-squared of time-series regressions. The CAPM does 
not predict that the market return is the only common risk factor and allows for non-market risk factors 
related to for example size, BE/ME and momentum. Rather, the CAPM predicts that the market return 
is the only common risk factor with a non-zero risk premium. To use the words of Davis, Fama and 
French (2000, p. 390)): “The acid test of a multifactor model is whether it explains differences in average 
returns.” 
3 The choice of N degrees of freedom is related to the use of benchmark portfolios rather than individual 
assets. For individual assets, N-K degrees of freedom is more appropriate. The K factor portfolios by 
construction have zero alphas (see also Table II in Section IIA). This has the effect of reducing the 
alphas of the individual assets that constitute the factor portfolios. In fact, in case N=K, all assets will 
have zero alphas and JT=0 by construction. In general, JT behaves as the sum of squares of (N-K) IID 
distributed random variables. However, in the empirical analysis, we will aggregate the large number of 
individual assets to a small number of benchmark portfolios and test multifactor efficiency for those 
benchmark portfolios. While the factor portfolios are linear combinations of the individual assets, they 
generally cannot be formed by combining the benchmark portfolios. Thus, the loss of degrees of freedom 
does not occur and we use N degrees of freedom (rather than N-K). 



22  Chapter 2 

 
 

required in case of heteroskedasticity and correlation. These problems are especially 
relevant in the context of our study, because small caps generally have highly volatile 
and highly correlated alphas (see Section 2.3 below). This may yield misleading 
conclusions when forming benchmark portfolio on size or stock characteristics that 
are associated with size. In this chapter, we will use the well-known Hansen and 
Jagannathan (1997) weighting scheme, in which the weights equal the elements of 
the inverted sample variance-covariance matrix of the asset returns.4 The associated 

Hansen and Jagannathan distance measure TJTHJ /≡  can be interpreted as the 
maximal weighted pricing error. 
 We stress that our methodology estimates the factor risk premiums 

][,],[ 1 KfEfE L  with their sample equivalents Kff ,,1 L , in the spirit of the early time-

series tests and the Gibbons, Ross and Shanken (1989) and MacKinlay and 
Richardson (1991) tests. An alternative approach is to select the estimates that 
optimize the empirical fit (or minimize the JT statistic), in the spirit of the early 
cross-section tests. An important drawback of this approach is that it may select 
“implausible” values for the risk premiums. For example, Wang and Zhang (2004) 
show that fitted risk premiums often imply arbitrage opportunities and thus violate 
the basic no-arbitrage principle that underlies all asset pricing models. By contrast, 
the sample estimates generally take “plausible” values that are arbitrage-free. 
Related to this, fitting the risk premiums yields less statistical power (probability of 
detecting multifactor inefficiency) than fixing the risk premiums. After all, we can 
always select the estimates such that K out of the N alphas are equal to zero. 
Further, fixing the estimates ensures that a single set of factor risk premiums is used 
for all benchmark sets. Hence, we cannot for example rationalize the BE/ME effect 
with one set of risk premiums and rationalize the momentum effect with another set 
of risk premiums. For these reasons, we fix rather than fit the risk premiums in the 
study. 
 

                                                 
4 A common alternative for the Hansen-Jagannathan weights is to use the “optimal” weights, which 
correct for the statistical distribution of the risk factors in addition to the asset returns distribution. In 
our analysis, the “optimal” weights generally yield somewhat lower values for the JT statistic, 
suggesting a better fit. However, the conclusions regarding the relative goodness of the three models are 
not affected. Hence, for the sake of brevity, we report the results for the Hansen-Jagannathan weights 
only. 
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2.3 Data 

2.3.1 Data sources 
Our empirical analysis uses individual stock returns, index returns and hedge 
portfolio returns. The monthly stock returns (including dividends and capital gains) 
are from the Center for Research in Security Prices (CRSP) at the University of 
Chicago. The market index is a value-weighted average of all U.S stocks included in 
this study. The one-month U.S Treasury bill is obtained from Ibbotson Associates. 
The monthly hedge portfolio returns (SMB, HML, and WML) are taken from the data 
library of Kenneth French.  
 Table 2.2 includes descriptive statistics for the four risk factors used in this 
chapter (market, SMB, HML and WML). The table lists the means and the alphas 
and associated standard errors for the three competing models (CAPM, 3-FM, and 4-
FM). Note that the alphas of the SMB, HML and WML factors differ from the means 
of these factors, which implies that the risk factors are not orthogonal. This does not 
affect the computation of the alphas or the statistical inference about the alphas. 
However, it does affect the interpretation of the factor means as risk premiums. For 
example, from the high HML mean in the pre-1963 period (0.43% per month), 
documented also in Fama and French (2000), we may suspect that there is a sizable 
value premium. However, the CAPM alpha of the HML portfolio is close to zero 
(0.06% per month) and hence the value premium disappears after correcting for 
market risk. Note also that the 3-FM alpha of the WML momentum factor is very 
high in both periods, suggesting a severe momentum problem for the three-factor 
model. 
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 Post-1963  Pre-1963 

 Avg  CAPM 
α̂  

3FM 
α̂  

4FM
α̂  

 Avg  CAPM
α̂  

3FM
α̂  

4FM 
α̂  

0.46  0.00 0.00 0.00  0.93  0.00 0.00 0.00 market 
(0.20)  (0.00) (0.00) (0.00) (0.34) (0.00) (0.00) (0.00) 

0.21  0.13 0.00 0.00 0.36 0.18 0.00 0.00 SMB 
(0.15)  (0.15) (0.00) (0.00)  (0.18)  (0.17) (0.00) (0.00) 

0.26  0.57 0.00 0.00  0.43  0.06 0.00 0.00 HML 
(0.14)  (0.14) (0.00) (0.00) (0.22) (0.18) (0.00) (0.00) 

0.49  0.94 1.07 0.00 0.47 0.89 0.93 0.00 WML 
(0.18)  (0.19) (0.19) (0.00)  (0.29)  (0.25) (0.23) (0.00) 

2.3.2 Data requirements 
We select ordinary common U.S stocks listed on the New York Stock Exchange 
(NYSE), American Stock Exchange (AMEX) and NASDAQ markets. We exclude 
ADRs, REITs, closed-end-funds, units of beneficial interest, and foreign stocks. 
Hence, we only include stocks that have a CRSP share type code of 10 or 11. We 
require a stock to have 60 months of prior return data available and information 
about the market capitalization (defined as price times the number of outstanding 
shares) at formation date. The past returns are needed for calculating beta and long-
term performance (reversal) and the market capitalization is required for computing 
value-weighted returns. Portfolio formation takes place at December of each year 
(except for momentum portfolios which are formed every month). Thus, to be included 
at December 1930, a stock must have trading information since January 1926 and a 
(positive) market capitalization for December 1930. A stock is excluded from the 
analysis if trading information is no longer available. In case of exclusion, the 
delisting return or partial monthly return provided by CRSP is used for the last 
return observation. On average, 1,854 stocks are included in the analysis, starting 
with 373 (in December 1930) and ending with 3,730 (in December 2002) after 
reaching a maximum of 3,907 (January 1999).  
 We use a long time-series that includes the pre-1963 period. For several 
reasons, the year 1963 is an important date. Prior to 1963, the Compustat database is 
affected by a survivorship bias. This bias is caused by the back-filling procedure 

Table 2.2 
Descriptive Statistics for the common risk factors 

This table shows the average returns and pricing errors of the common risk factors: market return 
(market), Small Minus Big (SMB), High Minus Low (HML) and Winner Minus Loser (WML) in the three 
competing models (CAPM, 3FM and 4FM). Results are shown for the post-1963 period (January 1963-
December 2002) and the pre-1963 period (January 1931- December 1962). Standard errors are given in 
brackets. The alphas of the factors that enter in a model are zero by construction.  
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excluding delisted firms, which typically are less successful (Kothari, Shanken and 
Sloan (1995)). In the context of our study, only the BE/ME portfolios require 
accounting data (the book value of equity).5 By contrast, the size, momentum, beta, 
reversal and industry portfolios do not require Compustat information. Further, from 
June 1962, AMEX-listed stocks are added to the CRSP database, which includes only 
NYSE-listed stocks before this month. Since AMEX stocks generally are smaller than 
NYSE stocks, the relative number of small caps in the analysis increases from June 
1962. In 1973, NASDAQ stocks are added to the CRSP database, which further skews 
the size distribution.  

2.3.3 Single-sorted portfolios 
Portfolios are formed at the end of each year, starting in December 1930, 60 months 
after the start of the CRSP reporting for individual stocks (January 1926). Thus, the 
portfolio returns cover the period from January 1931 to December 2002. We sort 
stocks into 10 deciles based on a given stock characteristic and compute value-
weighted portfolio returns of all stocks in each decile. The stock characteristics used 
in this chapter are: size, BE/ME, momentum, beta, industry and reversal. 
 The size, BE/ME and momentum portfolios are more or less “standard”. Size 
and BE/ME portfolio portfolios are taken from Kenneth French homepage.6 
Momentum portfolios are based on the price performance during the period from 12 

                                                 
5 We may circumvent this problem by replacing the book-to-market-equity ratio with the HML-beta (or 
the sensitivity for the HML factor), which does not require accounting information. To analyze if our 
results for the value portfolios are affected by the Compustat survivorship bias, we form HML-beta 
portfolios (using our own data requirements and formation procedure). Interestingly, the portfolio 
characteristics and the test results are not materially affected by the choice between BE/ME and HML-
beta. For this reason, we report the results for the familiar BE/ME portfolios only. 
6 We use Kenneth French’ portfolios because of familiarity and availability to the general readership. 
The data requirements and portfolio formation procedures used to arrive at these portfolios are 
somewhat different from the ones we use for the other benchmark sets: 
 (1) To avoid a look-ahead bias, which arises when using accounting data, Fama and French construct 
portfolios at the end of June. By contrast, we construct portfolios at the end of December.  
(2) For BE/ME portfolios, Fama and French required a firm to have Compustat/Moody’s accounting 
information, which limits the number of included stocks and may introduce survivorship bias. By 
contrast, we rely solely on the 200212 CRSP database. 
(3) For BE/ME portfolios, Fama and French exclude the financials because these firms tend to be highly 
levered. For all other sorts, the financials are included in the analysis. 
(4) Fama and French employ NYSE decile breakpoints to limit the role of small caps in the post-1963 
period. We employ NYSE/AMEX/NASDAQ breakpoints and analyze the small cap market segment 
seperately.  
We also form size and value portfolios using our own data requirements and formation procedure. 
However, the portfolio characteristics and the test results are not materially affected by the choice 
between the two sets of size and value portfolios. For this reason, we report the results for Kenneth 
French’ portfolios only. 
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months ago to one month ago (past 12-1 month returns), similar to the procedure of 
Fama and French (1996). For momentum, portfolio formation takes place on a 
monthly basis rather than annually. 
 There are several good reasons for analyzing beta, industry and reversal 
portfolios in addition to the “standard” portfolios. Beta portfolios can be motivated by 
theory, as the CAPM stipulates that beta drives average returns. In fact, forming 
portfolios on other stock characteristics may lead to erroneous rejections of the CAPM 
due to a lack of variation in the betas and means. Our beta portfolios are based on the 
historical 60-month betas of the individual stocks.  
 Contrary to some other benchmark sets, industry portfolios are not suspected 
of data-snooping problems, because the industry classification does not depend on the 
outcomes of prior empirical research. Our industry portfolios are based on the 4-digit 
SIC codes given on Kenneth French’ website.  
 Reversal portfolios are directly related to BE/ME portfolios, because long-term 
losers (winners) tend to have low (high) prices and hence favorable (unfavorable) 
multiples. However, contrary to BE/ME portfolios, reversal portfolios do not require 
accounting data, which makes these portfolios useful for analyzing the pre-1963 
period without using Compustat data. Our reversal portfolios are based on the long-
term price performance (past 60-month returns), following the definition ofDeBondt 
and Thaler (1985). 
 At this point, it is useful to look in closer detail at the problems surrounding 
small caps. As discussed in Section 2.2, the high volatility and high correlation of 
small caps introduces the need to weight the alphas. Panel A of Table 2.3 illustrates 
this point with the sample variance and sample correlation coefficients of the ten size 
portfolios. For example, the sample variance of the small cap portfolio (ME1) is 88.83, 
while the sample variance for the large cap portfolio (ME10) is only 21.77, a ratio of 
four to one. Also, the correlation between ME1 and ME2 is 0.95, while the correlation 
between ME1 and ME10 is only 0.66. These findings suggest that the alphas of small 
caps are less reliable than the alphas of large caps and that the alpha of one small 
cap portfolio contains only little information in addition to alpha of another small cap 
portfolio. This clearly introduces the need to weight the alphas. 
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Panel A: Size-related heteroskedasticity and correlation

Port. Var. Correlation coefficients
  1 2 3 4 5 6 7 8 9 10 

ME1 88.83 1.00 0.95 0.92 0.91 0.88 0.84 0.83 0.78 0.76 0.66 
ME2 70.02  1.00 0.97 0.96 0.94 0.92 0.91 0.87 0.84 0.75 
ME3 55.23   1.00 0.98 0.97 0.95 0.94 0.91 0.89 0.80 
ME4 49.58    1.00 0.98 0.97 0.96 0.93 0.91 0.82 
ME5 44.98    1.00 0.98 0.97 0.96 0.93 0.85 
ME6 39.67    1.00 0.98 0.97 0.95 0.88 
ME7 37.28       1.00 0.98 0.97 0.90 
ME8 31.79    1.00 0.98 0.92 
ME9 28.38         1.00 0.94 
ME10 21.77          1.00 

Panel B: Size distribution 
 Size (ME) BE/ME Mom Beta Rev Ind 

Port. Size % Size % Size % Size % Size % Size % 
1 0.02 0% 1.38 25% 0.20 3% 0.44 8% 0.12 3% 0.98 8% 
2 0.07 1% 1.10 15% 0.44 6% 0.76 12% 0.24 5% 1.28 8% 
3 0.13 1% 0.88 12% 0.72 9% 1.11 15% 0.36 6% 1.65 11% 
4 0.20 1% 0.75 9% 0.92 11% 1.09 12% 0.53 8% 1.88 11% 
5 0.32 2% 0.70 9% 1.08 12% 1.06 11% 0.75 9% 0.74 24% 
6 0.48 3% 0.56 8% 1.16 13% 1.21 12% 0.98 11% 3.57 6% 
7 0.76 5% 0.51 8% 1.24 13% 1.33 11% 1.22 13% 1.08 8% 
8 1.27 8% 0.42 6% 1.26 13% 1.03 8% 1.46 15% 0.69 10% 
9 2.44 15% 0.32 5% 1.22 13% 0.86 7% 1.63 15% 0.86 11% 

10 11.83 64% 0.15 3% 0.81 8% 0.49 4% 1.99 15% 0.40 3% 

 
There is a strong association between size and the other stock characteristics 
(BE/ME, momentum, beta, reversal and industry). Panel B of Table 2.3 illustrates 
this problem by means of the average market capitalization and the total market 
capitalization of the single-sorted portfolios. For example, the growth portfolio 
(BE/ME1) involves an average size of $1.38bn and represents 25% of the total market 
capitalization, while the value portfolio (BE/ME10) involves an average size of 
$0.15bn and represents 3% of the total market capitalization. Further, the telecom 
industry portfolio consists of a small number of relatively large stocks ($3.57bn), 
while the manufacturing industry portfolio includes a high number of relatively small 
stocks ($0.74bn). In general, value stocks, short-term loser stocks, low-beta stocks 

Table 2.3
Size-related heteroskedasticity and correlation and the size distribution 

Panel A shows the sample variance and the correlation coefficients for the ten size (ME) decile portfolios 
for the January 1963 to December 2002 period (T=480). Panel B shows the average firm size within the 
portfolio (size in billion $) and total portfolio size (% of total market capitalization) of the single-sorted 
portfolios based on size, BE/ME, momentum, beta, reversal and industry for the January 1963 to 
December 2002 period (T=480). The size and BE/ME portfolios are taken from Kenneth French’s 
website. The momentum portfolios are constructed at the end of each month based on momentum 
(cumulative past 12-1 month price performance). The beta portfolios are constructed based on 60-month 
historical betas. Reversal portfolios are constructed based on long-term return performance (cumulative 
past 60-month price performance). Industry portfolios are based on the 4-digit SIC codes (1 nondurables, 
2 durables, 3 oil, 4 chemicals, 5 manufacturing, 6 telecom, 7 utilities, 8 shops, 9 financials and 10 all 
other). 
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and long-term loser stocks tend to be smaller. Hence, the small cap problems, ranging 
from the high volatility and high correlation of the alphas to the low market liquidity 
and high transaction costs, are passed on to the other benchmark portfolios. 

2.3.4 Double-sorted portfolios 
The weighting of the alphas (see Section 2.2) can correct for the differences of 
volatility and correlation between the alphas. However, this approach cannot correct 
for the size-related problems of market liquidity and transaction costs. Instead, to 
control for size, we construct sets of 25 double-sorted portfolios by first sorting the 
individual stocks into size quintiles (NYSE breakpoints) and next forming quintiles 
based on another stock characteristic within each size segment. We will subsequently 
analyze multifactor efficiency within each size quintile separately. 
 We use the well-known 25 Fama and French size-BE/ME portfolios and 
complement these portfolios with 25 size-momentum portfolios, 25 size-beta 
portfolios, 25 size-reversal portfolios and 38 size-industry portfolios. The size-
industry portfolios are constructed by sorting on the 4-digit SIC code within every 
size quintile, yielding 50 portfolios in total. Due to some size-industry combinations 
not occurring, 12 out of these 50 portfolios are empty for some period of time. For 
example, the telecom industry includes no small caps throughout the 1930s to 1970s. 
Excluding these 12 portfolios yields 38 size-industry portfolios. 7 
 The data selection criteria and sorting frequency for the double-sorted 
portfolios are identical to those used for the single-sorted portfolios. All data used in 
this dissertation are publicly available.8 

                                                 
7 The 12 missing size-industry portfolios are: oil (small), telecom (small, 2, 3 and 4), utilities (small, 2 
and 3) and financials (small, 2, 3 and 4). 
8 Monthly return data of the single-sorted benchmark portfolios (momentum, beta, reversal, industry), 
double-sorted portfolios (size-momentum, size-beta, size-reversal) and the market index (consisting of all 
stocks included in this study) are available at our online datacenter: 
www.few.eur.nl/few/people/wvanvliet/datacenter. 
Hedge factors and size (ME) and value (BE/ME) portfolio return data can be found at Kenneth French 
datalibrary: 
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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2.4 Results 
Our test results are summarized in Table 2.4 (size, BE/ME and momentum 
portfolios), Table 2.5 (beta, reversal and industry portfolios) and Table 2.6 (size 
quintiles). Below, we discuss the main conclusions that can be drawn from these 
results. 

2.4.1 Size, BE/ME and momentum portfolios 
Panel A of Table 2.4 shows the results for the post-1963 period. The results for this 
period confirm the existing empirical evidence for the multifactor models. 
Specifically, the CAPM cannot be rejected for size, but has to be rejected for the 
BE/ME and momentum portfolios. By contrast, the 3FM and 4FM cannot be rejected 
for the BE/ME portfolios, but still have to be rejected for momentum portfolios. 
 Consistent with the findings of Gibbons, Ross and Shanken (1989) and Fama 
and French (1992), there seems to be no “size effect”. Substantial improvements do 
occur for the individual alphas of the size portfolios. Most notably, the alpha for the 
small cap portfolio (ME1) goes from 0.23 (CAPM) to -/-0.07 (3FM) and -/-0.09 (4FM). 
However, the small cap alphas are highly volatile and highly correlated (see Table 2.3 
panel A). This is reflected in the JT statistic (which corrects for heteroskedasticity 
and correlation) not being significantly greater than zero for the CAPM (p=0.69) and 
not improving significantly for the multifactor models. Hence, no stand-alone size 
effect occurs. Still, there is an important interaction effect between size and the other 
stock characteristics; the BE/ME and momentum effects are most pronounced in the 
small cap and midcap market (see Section 2.3.4). 
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Several further points should be mentioned. The 3FM actually yields a worse 

fit than the CAPM for the momentum portfolios (JT goes from 43.8 to 51.2), which 
confirms the findings of Fama and French (1996) and the high 3FM alpha of the 
WML portfolios (see Table 2.2). Adding momentum as a fourth risk factor does not 
help to better explain the returns on size and BE/ME portfolios. Further, despite the 
improvements for the individual pricing errors and the overall fit, the 4FM still has 
to be convincingly rejected for the momentum portfolios (p=0.00). 
 Panel B of Table 2.4 shows the results for the pre-1963 period. For the size 
portfolios, more or less the same pattern emerges as for the post-1963 period: the 

Panel A: Post 1963 

Alphas 1 2 3 4 5 6 7 8 9 10  JT HJ p 

CAPM 0.23 0.13 0.15 0.11 0.15 0.05 0.08 0.06 0.02 -0.06  7.4 0.124 0.69 
3FM -0.07 -0.09 -0.07 -0.08 -0.01 -0.09 -0.03 -0.04 -0.04 0.04  5.8 0.110 0.83 Si

ze
 

4FM -0.09 -0.11 -0.05 -0.08 0.00 -0.08 -0.04 -0.02 -0.05 0.04  6.9 0.120 0.73 

CAPM -0.19 -0.03 -0.02 -0.02 0.05 0.17 0.27 0.32 0.36 0.39  16.3 0.184 0.09 
3FM 0.15 0.04 -0.05 -0.14 -0.10 -0.03 -0.04 -0.07 -0.07 -0.17  6.0 0.112 0.81 

V
al

ue
 

4FM 0.13 0.06 -0.01 -0.14 -0.12 -0.03 -0.02 -0.07 -0.03 -0.16 8.1 0.130 0.62 
 

CAPM -1.18 -0.48 -0.31 -0.06 -0.19 -0.08 0.07 0.23 0.26 0.65 43.8 0.302 0.00 
3FM -1.25 -0.60 -0.41 -0.16 -0.29 -0.16 0.03 0.20 0.27 0.79  51.2 0.327 0.00 

M
om

 

4FM -0.13 0.24 0.23 0.24 -0.09 -0.10 -0.08 -0.07 -0.18 0.09  30.3 0.251 0.00 

Panel B: Pre 1963 

Alphas 1 2 3 4 5 6 7 8 9 10  JT HJ p 

CAPM 0.53 0.25 0.21 0.19 0.08 0.14 0.09 0.05 0.03 -0.01  4.0 0.091 0.95 
3FM 0.14 -0.06 -0.02 0.00 -0.08 0.04 0.00 0.00 0.01 0.01 3.7 0.088 0.96 Si

ze
 

4FM 0.36 -0.01 0.01 -0.02 -0.05 0.02 -0.05 0.00 0.03 0.01  6.2 0.114 0.80 
 

CAPM -0.01 0.04 0.01 -0.16 0.12 -0.09 -0.13 0.13 0.06 -0.07 11.3 0.153 0.34 
3FM 0.01 0.04 0.01 -0.16 0.11 -0.11 -0.19 0.08 -0.05 -0.29  12.2 0.159 0.27 

V
al

ue
 

4FM 0.02 0.05 0.02 -0.10 0.13 -0.08 -0.11 0.08 0.02 -0.17  7.8 0.127 0.65 

CAPM -0.84 -0.53 -0.42 -0.22 -0.11 -0.10 0.04 0.31 0.28 0.66  23.7 0.222 0.01 
3FM -0.96 -0.56 -0.43 -0.21 -0.10 -0.12 0.05 0.32 0.28 0.65 25.6 0.231 0.00 

M
om

 

4FM -0.18 0.14 0.05 0.06 0.17 -0.02 -0.03 0.12 -0.09 0.12  11.0 0.151 0.36 

Table 2.4 
Size, value and momentum portfolios 

This table gives the test results for the portfolios based on size, BE/ME (value), and momentum for the 
three competing asset pricing models (CAPM, 3FM and 4FM). The size and BE/ME portfolios are taken 
from Kenneth French’s website. The momentum portfolios are constructed at the end of each month 
based on momentum (cumulative past 12-1 month price performance). Every row shows the alphas 
(Equation 2.2), the JT test statistic (Equation 2.3) and the associated Hansen Jagannathan (1997) 
distance and p-value. Test results are shown for the post-1963 sample from January 1963 to December 
2002 (T=480) and the pre-1963 sample from January 1931 to December 1962 (T=384). P-values below 
the significance level of 10% are highlighted. 
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CAPM cannot be rejected and the multifactor models do not yield significant 
improvements.  

Interestingly, the BE/ME effect disappears in the pre-1963 period, consistent 
with the finding of Ang and Chen (2003). Specifically, the CAPM alphas are much 
smaller and not jointly significantly different from zero (p=0.34). The 3FM actually 
yields a somewhat worse fit than the CAPM (most notably, the alpha of the BE/ME 
portfolio #10 deteriorates from -/-0.07 to -/-0.29). The 4FM improves the fit for the 
book/market portfolios, albeit not to a significant degree. At first sight, the 
disappearing of the value effect seems inconsistent with the high HML mean in the 
pre-1963 period, which was used by Fama and French (2000) as evidence for the 
robustness of the value effect. However, as discussed in Section 2.3.1, the HML 
portfolio is not market-neutral and no value premium remains after correcting for 
market risk in the pre-1963 period.  

The momentum effect is persistent and continues to challenge the CAPM in 
the pre-1963 period. Again the 3FM is also unable to explain the returns on 
momentum portfolios. Adding a momentum factors shows a substantial improvement 
relative to the CAPM (JT goes from 23.7 to 11.0). In fact, due to the alphas generally 
being smaller than in the post-1963 period, the 4FM now cannot be rejected (p=0.36). 
 In sum, if we move from the post-1963 period to the pre-1963 period, the 
rationale for using the 3FM disappears, while the 4FM is useful to capture the 
momentum effect. 

2.4.2 Beta, reversal and industry portfolios  
The empirical successes for post-1963 BE/ME portfolios (3FM and 4FM) and 
momentum portfolios (4FM only) are well documented and are often used to justify 
the use of the multifactor models. However, the empirical validity of these models for 
other types of benchmark portfolios is not well documented. Table 2.5 shows our 
results for the beta, reversal and industry portfolios, again using post-1963 and pre-
1963 data. 

For the beta portfolios, the CAPM cannot be rejected (with a post-1963 p-value 
of 0.21 and a pre-1963 p-value of 0.65). Also, the multifactor models do not improve 
the fit; in fact, they generally lead to a small deterioration. Important improvements 
of the alphas do occur for the high beta portfolios. However, these alphas are 
relatively unreliable (high beta portfolios are dominated by small caps; see Table 2.3 
panel B) and the improvements are offset by deteriorations of the alphas of the 
medium beta portfolios (which are dominated by large caps and have more reliable 
alphas). Thus, multiple factors do not improve the fit for beta portfolios. This finding 
is remarkable, because beta portfolios are an obvious choice for testing the CAPM. 
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A similar pattern is found for the reversal portfolios; no significant reversal effect 
occurs. In the post-1963 period, some individual CAPM alphas are large, for example 
0.41 for the long-term loser portfolio #1, and the 3FM lowers these alphas (as 
documented also in Fama and French (1996)). However, as for the high beta 
portfolios, these alphas are highly unreliable (loser portfolios are dominated by small 
caps; see Table 2.2 panel B) and do not weight heavily in determining the overall 
goodness-of-fit. The advantage of using multiple factors for reversal portfolios 
disappears entirely in the pre-1963 period. This pattern is comparable to that of the 
BE/ME portfolios and may reflect the close link between reversal and BE/ME. Note 
that adding the WML factor (4FM) worsens the fit relative to the CAPM and 3FM. 

Panel A: Post 1963 

Alphas 1 2 3 4 5 6 7 8 9 10  JT HJ p 

CAPM 0.21 0.19 0.02 -0.02 0.11 -0.09 -0.10 -0.22 -0.20 -0.30 13.2 0.166 0.21 
3FM -0.02 0.08 -0.09 -0.13 0.02 -0.16 -0.16 -0.25 -0.12 -0.18 13.3 0.166 0.21 

B
et

a 

4FM -0.09 0.01 -0.14 -0.16 0.04 -0.15 -0.08 -0.08 0.06 -0.04  14.6 0.174 0.15 

CAPM 0.41 0.30 0.30 0.22 0.19 0.16 0.08 0.00 -0.10 -0.19  7.0 0.121 0.73 
3FM -0.10 -0.05 -0.01 -0.02 0.00 0.00 -0.05 -0.05 -0.05 0.08  2.6 0.073 0.99 R

ev
 

4FM 0.41 0.34 0.24 0.15 0.10 0.04 -0.04 -0.09 -0.16 -0.05 6.8 0.119 0.75 
 

CAPM 0.23 0.00 0.19 0.12 -0.11 0.03 0.02 0.06 0.02 -0.14 8.9 0.136 0.54 
3FM 0.11 -0.12 0.08 0.20 0.05 0.07 -0.26 0.11 -0.20 -0.41  21.0 0.209 0.02 In

d 

4FM 0.11 -0.05 0.00 0.15 0.14 0.18 -0.28 0.24 -0.13 -0.38  20.2 0.205 0.03 

Panel B: Pre 1963 

Alphas 1 2 3 4 5 6 7 8 9 10  JT HJ p 

CAPM 0.14 0.01 0.14 0.03 0.13 -0.03 -0.03 -0.11 -0.16 -0.23  7.8 0.143 0.65 
3FM 0.14 0.02 0.14 0.03 0.11 -0.06 -0.07 -0.18 -0.25 -0.32 9.5 0.141 0.48 

B
et

a 

4FM 0.20 0.07 0.14 0.04 0.07 -0.07 -0.13 -0.16 -0.14 -0.22  7.3 0.124 0.69 
 

CAPM 0.23 0.00 0.19 0.12 -0.11 0.03 0.02 0.06 0.02 -0.14 4.4 0.096 0.93 
3FM 0.11 -0.12 0.08 0.20 0.05 0.07 -0.26 0.11 -0.20 -0.41  4.3 0.095 0.93 R

ev
 

4FM 0.11 -0.05 0.00 0.15 0.14 0.18 -0.28 0.24 -0.13 -0.38 4.9 0.101 0.90 
 

CAPM 0.12 0.16 0.22 0.11 -0.13 0.17 -0.12 0.07 0.15 -0.34  11.1 0.152 0.35 
3FM 0.12 0.15 0.25 0.14 -0.14 0.17 -0.13 0.07 0.13 -0.39 12.6 0.162 0.25 In

d 

4FM 0.11 0.18 0.13 0.13 -0.09 0.24 -0.05 0.10 0.18 -0.26  9.4 0.140 0.50 

Table 2.5
Beta, Reversal and Industry Portfolios 

This table gives the test results for the decile portfolios based on beta, reversal and industry for the 
three competing asset pricing models (CAPM, 3FM and 4FM). The beta portfolios are constructed based 
on 60-month historical betas. Reversal portfolios are constructed based on long-term return performance 
(cumulative past 60-month price performance). Industry portfolios are sorted on 4-digit SIC codes (1 
nondurables, 2 durables, 3 oil, 4 chemicals, 5 manufacturing, 6 telecom, 7 utilities, 8 shops, 9 financials 
and 10 all other). Every row shows the alphas (2), the JT test statistic (3) and the associated Hansen 
Jagannathan (1997) distance and p-value. Test results are shown for the post-1963 sample from January 
1963 to December 2002 (T=480) and the pre-1963 sample from January 1931 to December 1962 (T=384). 
P-values below the significance level of 10% are highlighted. 
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While the three competing models do not yield significantly different results 
for the beta and reversal portfolios, the results are significantly different for the 
industry portfolios. Specifically, in the post-1963 period, the CAPM cannot be 
rejected, with generally small alphas. Surprisingly, the multifactor models lead to 
severe deteriorations of the alphas and have to be convincingly rejected. For example, 
the alpha for the utilities portfolio (#7) goes from 0.02 (CAPM) to -/-0.26 (3FM) and -/-
0.28 (4FM). Overall, the JT statistic increases from 8.9 (0.54) to 21.0 (0.02) and 20.2 
(0.03) for the three models respectively. Clearly, multiple factors hurt rather than 
help for industry portfolios. This finding is remarkable, because the industry 
classification (contrary to size, BE/ME and momentum) is not motivated by known 
patterns in historical return series and hence allows for comparing the competing 
models with less risk of data snooping. 

2.4.3 Size quintiles 
It is important to control for size because small caps generally involve relatively low 
market liquidity and high transaction costs. By weighting the alphas, the GMM 
framework corrects for the high volatility and correlation of small caps, but it does 
not correct for liquidity and costs. For this reason, we complement the above analysis 
of single-sorted portfolios with a further analysis of size-BE/ME, size-momentum, 
size-beta, size-reversal and size-industry portfolios. 

Table 2.6 shows the results within the different size quintiles of the double-
sorted portfolios. The general conclusion that can be drawn from these results is that 
the CAPM cannot be rejected for the large caps, representing roughly 80% of the total 
stock market capitalization. For post-1963 BE/ME portfolios, Loughran (1997) found 
that a substantial portion of the pricing errors is driven by the low returns of small 
newly-listed growth stocks. Similarly, Hong, Lim and Stein (2000) showed that the 
profitability of momentum strategies declines sharply with firm size. Our results 
suggest that similar size-effects occur also for stock characteristics other than BE/ME 
and momentum. For example, the CAPM can be rejected relative to beta and industry 
within the smallest stock quintile. The interaction with size disappears during the 
early pre-1963 period. This may reflect the smaller fraction of small caps in the 
analysis due to the focus on NYSE-listed stocks prior to June 1962. 
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T

he 
multif
actor 
models 
yield 
import
ant 
improv
ements 
for the 
small 
caps 
and 
medium caps, most notably for BE/ME, beta and reversal in the post-1963 period 
(3FM and 4FM) and for momentum portfolios in both periods (4FM only). However, 

Panel A: Post 1963 

  Value  Momentum  Beta  Reversal  Industry 

  JT p  JT p JT p JT p JT p 

CAPM 59.9 0.00  71.9 0.00 23.2 0.00 14.6 0.01 12.5 0.05 
3FM 20.0 0.00  67.3 0.00  5.6 0.35  4.2 0.51  14.6 0.02 

Sm
al

l 

4FM 17.0 0.00  14.0 0.02 3.5 0.63 12.7 0.03 11.8 0.07  

CAPM 33.1 0.00  42.3 0.00 19.0 0.00 10.8 0.06 7.0 0.43 
3FM 7.1 0.21  35.4 0.00  3.8 0.58  4.9 0.43  12.8 0.08 2 

4FM 6.1 0.30  2.3 0.80  1.7 0.89  12.7 0.03  10.2 0.18  

CAPM 20.4 0.00  22.2 0.00 11.2 0.05 5.9 0.32 7.4 0.39 
3FM 2.7 0.75  26.9 0.00  1.0 0.96  2.4 0.79  5.8 0.57 3 

4FM 2.1 0.84  5.2 0.39  2.0 0.85  2.5 0.78  4.6 0.71  

CAPM 18.4 0.00  14.1 0.01  12.9 0.02  7.5 0.19  3.1 0.93 
3FM 9.6 0.09  19.5 0.00 7.0 0.22 1.3 0.93 7.7 0.46 4 

4FM 6.4 0.27  5.7 0.34  5.8 0.33  4.3 0.51  7.6 0.48  

CAPM 4.7 0.46  8.7 0.12  5.4 0.37  4.8 0.44  14.3 0.16 
3FM 6.0 0.31  16.7 0.01 1.4 0.93 1.2 0.95 25.8 0.00 

La
rg

e 

4FM 5.4 0.37  16.6 0.01  0.7 0.98  5.3 0.39  25.1 0.01 

Panel B: Pre 1963 

  Value  Momentum  Beta  Reversal  Industry 

  JT p  JT p  JT p  JT p  JT p 

CAPM 13.7 0.02  4.8 0.44  12.9 0.02  3.3 0.97  1.9 0.93 
3FM 12.4 0.03  3.7 0.60 11.9 0.04 2.5 0.99  1.3 0.97 

Sm
al

l 

4FM 9.5 0.09  4.1 0.54  11.5 0.04  2.6 0.99  1.1 0.98  

CAPM 1.2 0.94  30.6 0.00  18.3 0.00  1.5 1.00  5.0 0.66 
3FM 1.1 0.95  28.0 0.00  17.1 0.00  1.6 1.00  5.8 0.57 2 

4FM 2.1 0.84  11.7 0.04 18.6 0.00 2.3 0.99  5.2 0.64  

CAPM 2.4 0.79  12.3 0.03 15.6 0.01 3.2 0.98  9.2 0.24 
3FM 2.5 0.78  11.9 0.04  14.7 0.01  4.3 0.93  8.5 0.29 3 

4FM 0.8 0.97  0.7 0.98 11.0 0.05 3.1 0.98  4.3 0.74  

CAPM 3.2 0.71  24.4 0.00 14.4 0.01 4.6 0.92  18.5 0.02 
3FM 3.6 0.71  23.9 0.00  14.8 0.01  5.1 0.88  19.0 0.01 4 

4FM 3.2 0.95  4.8 0.44  16.1 0.01  5.2 0.88  16.8 0.03  

CAPM 3.0 0.67  12.2 0.03 6.5 0.26 3.0 0.98  10.5 0.39 
3FM 2.9 0.61  13.1 0.02  7.9 0.16  3.6 0.96  11.7 0.31 

La
rg

e 

4FM 1.1 0.67  0.7 0.98  8.4 0.14  3.2 0.98  8.7 0.56 

Table 2.6
Size quintiles 

This table gives the test results for the double-sorted portfolios based on BE/ME (value), momentum, 
beta, reversal and industry for the three asset pricing models (CAPM, 3FM and 4FM). In December of 
each year, stocks are first sorted into size quintiles (NYSE quintiles) and subsequently further divided 
based on other stock characteristics. The 25 Size-BE/ME portfolios are obtained from Kenneth French. 
The 25 size-momentum, 25 size-beta, 25 size-reversal and 38 size-industry portfolios are formed using 
the 200212 CRSP database. Every row shows the JT test statistic (3) and p-value. Test results are 
shown for the post-1963 sample from January 1963 to December 2002 (T=480) and the pre-1963 sample 
from January 1931 to December 1962 (T=384). p-values below the significance level of 10% are 
highlighted. 
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multiple factors do not help for the large cap market segment. In fact, for post-1963 
large cap momentum portfolios, the CAPM cannot be rejected (with a p-value of 0.12), 
while the multifactor models perform significantly worse and have to be rejected 
(with a p-value of 0.01 for both models). Figure 2.1 illustrates this remarkable finding 
by means of the alphas of the 5 momentum portfolios in the large cap segment. Most 
notably, for the large winner portfolio (#5) the 3FM alpha is 0.50 (0.31 for CAPM) and 
for the large loser portfolios (#1) the 4FM alpha is 0.41 (-/-0.20 for CAPM). Similarly, 
for post-1963 large industry portfolios, addition of multiple factors lead to a 
significant deterioration of the models fit (p-value goes from 0.16 to 0.00 and 0.01). 
For example, the pricing error of the large cap utility portfolio deteriorates from -/-
0.06 (CAPM) to -/-0.33 (3FFM) and -/-0.36 (4FM). 

These results clearly suggest that the multifactor models help for small caps 
but hurt in the large cap stock market. This is an important finding given the 
economic significance of large caps; to repeat, these stocks generally involve high 
market liquidity and low transaction costs. 
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Figure 2.1: Large cap momentum and industry alphas (1963-2002). This figure shows the alphas for the 
large cap momentum and the large cap industry portfolios for the January 1963 – December 2002 
period. Momentum portfolio #1 consists of the large loser stocks and portfolio #5 consists of large winner 
stocks. Large cap industry portfolios are based on the 4-digit SIC codes (1 nondurables, 2 durables, 3 oil, 
4 chemicals, 5 manufacturing, 6 telecom, 7 utilities, 8 shops, 9 financials and 10 all other). The CAPM 
alphas (clear bars) are not jointly significantly different from zero, while the 3FM alphas (grey bars) and 
4FM alphas (black bars) are jointly significantly different from zero.  
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2.5 Concluding remarks 
Multiple factors are known to improve the empirical fit relative to the single-factor 
CAPM for value portfolios and momentum portfolios (only 4FM) in the post-1963 
period. Our study suggests that these results are highly specific to the sample period 
and the set of benchmark portfolios. Specifically, the evidence in favor of multifactor 
alternatives largely disappears if we (1) analyze the pre-1963 period rather than to 
the typical post-1963 period, (2) employ size, beta, reversal and industry portfolios 
rather than BE/ME and momentum portfolios, and/or (3) focus on the large cap 
market segment, roughly 80% of the total market capitalization. In fact, in the cases 
of the post-1963 industry portfolios and large cap momentum portfolios, the 
multifactor models yield a significantly worse fit than the CAPM. These findings 
support the hypothesis that the existing evidence in favor of the multifactor models is 
the result of data snooping or other non-risk based explanations such as transaction 
costs and market liquidity of small stocks. Combined with the weak theoretical 
underpinnings, this in our opinion casts serious doubt on the use of multifactor 
models, especially for large cap stocks. 
 
 
 



 

Chapter 3 

SD efficiency of the stock market portfolio1 

 

3.1 Introduction 
EFFICIENCY OF THE STOCK MARKET PORTFOLIO is a much-debated topic in financial 
economics. Asset pricing models that employ a representative investor, including the 
mean-variance based CAPM, predict that the market portfolio is efficient.2 At first 
glance, market portfolio efficiency is also consistent with the popularity of passive 
mutual funds and exchange traded funds that track broad value-weighted equity 
indexes. Nevertheless, several empirical studies suggest that the market portfolio is 
highly and significantly inefficient. Most notably, the market portfolio seems mean-
variance (MV) inefficient relative to stock portfolios formed on variables such as 
market capitalization (size), book-to-market equity ratio (value) and price momentum 
(see for instance Basu (1977), Banz (1981), Fama and French (1992) (1993) and 
Jegadeesh and Titman (1993)).  
 The empirical results may reflect the limitations of the MV criterion. It is 
well-known that asset returns cannot be described by mean and variance alone. For 
example, the monthly returns of many stocks exhibit positive skewness and excess 
kurtosis. Also, a wealth of psychological research on decision-making under risk 
suggests that the perception of risk is more complex than variance. Especially the 
                                                 
1 This chapter is based on the paper entitled “downside risk and asset pricng” co-authored by Thierry 
Post(2004b).  For the most recent version of this paper go to: http//ssrn.com/abstract=503142 
2 These models typically use one of two theoretical motivations: (1) the capital market is complete or (2) 
investor preferences are sufficiently similar; see for instance Rubinstein (1974). 

ABSTRACT: This chapter analyzes if the value-weighted stock market portfolio is stochastic 
dominance (SD) efficient relative to benchmark portfolios formed on size, value, and 
momentum. In the process, we also develop several methodological improvements to the 
existing tests for SD efficiency. Interestingly, the market portfolio is SD efficient relative 
to all benchmark sets. By contrast, the market portfolio is inefficient if we replace the SD 
criterion with the traditional mean-variance criterion. Combined these results suggests 
that the mean-variance inefficiency of the market portfolio is caused by the omission of 
return moments other than variance. Especially downside risk seems to be important for 
explaining the high average returns of small/value/winner stocks. 
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phenomena of skewness preference and loss aversion have attracted much attention 
among financial economists. This provides a rationale for replacing the MV criterion 
with a more general efficiency criterion that accounts for higher-order central 
moments (such as skewness and kurtosis) and lower partial moments (such as 
expected loss and semi-variance). 
 One popular approach to extend the MV criterion is by changing the 
maintained assumptions on investor preferences. If we do not restrict the shape of 
the return distribution, then the MV criterion is consistent with expected utility 
theory only if utility takes a quadratic form.3 Extensions can be obtained by using 
alternative classes of utility. For example, Kraus and Litzenberger (1976) and 
Harvey and Siddique (2000) assume that utility can be approximated using a third-
order polynomial (to account for skewness), and Dittmar (2002) uses a fourth-order 
polynomial (to account for skewness and kurtosis). 
 Unfortunately, the researcher faces two possible obstacles in implementing 
this approach. First, economic theory does not forward strong predictions about the 
shape of investor preferences and the return distribution. The theory specifies 
general regularity conditions such as nonsatiation (utility of wealth is increasing) 
and risk aversion (utility is concave), but not a functional form for preferences and 
distributions. This introduces a serious risk of specification error. For example, a 
fourth-order polynomial is not sufficiently flexible to account for lower partial 
moments, which require a non-differentiable utility function. 
 Second, it is often difficult to impose the regularity conditions in practice. The 
regularity conditions are needed to ensure that the results are economically 
meaningful. Also, these regularity conditions can improve the statistical power 
(=ability to detect inefficient portfolios) of efficiency tests. Further, from a 
mathematical perspective, a concave increasing utility function is required in order to 
justify the common approach of checking the first-order condition to test for market 
portfolio efficiency.4 Unfortunately, it can be difficult to impose the regularity 
conditions on a parametric utility function. For example, we cannot restrict a 
quadratic utility function to be globally increasing and we cannot restrict a cubic 
utility function to be globally concave (see for example Levy (1969)). Moreover, not 
imposing the regularity conditions frequently leads to severe violations of the 
                                                 
3 Less restrictive assumptions are obtained if we do restrict the shape of the return distribution; see, for 
example, Berk (1997). 
4 For a non-concave utility function the first-order condition is a necessary but nut sufficient condition 
for establishing a global maximum for expected utility; the first-order condition also applies for possible 
local optima and a possible global minimum. This important result is sometimes ignored when using 
non-concave utility functions. 
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regularity conditions. For example, Dittmar (2002, Section IIID) shows that the 
apparent explanatory power of a quartic utility function (which accounts for 
skewness and kurtosis) disappears if we impose (necessary conditions for) risk 
aversion. Similarly, Wang and Zhang (2004) show that the results of unrestricted 
asset pricing studies frequently imply serious arbitrage opportunities. 
 These empirical and theoretical considerations provide strong arguments for 
using the criteria of stochastic dominance (Hadar and Russell (1969), Hanoch and 
Levy (1969), Levy and Hanoch (1970) and Whitmore (1970)). These criteria avoid 
parameterization of investor preferences and the return distribution, while ensuring 
that economic regularity conditions are satisfied. Different SD criteria have been 
developed for different sets of regularity conditions. In this chapter, we focus on the 
relatively powerful third-order stochastic dominance (TSD) criterion (Whitmore 
(1970)). This criterion imposes the standard regularity conditions of nonsatiation and 
risk aversion. Also, TSD assumes a preference for positive skewness (marginal utility 
is convex). Empirical evidence suggests that investors indeed display this kind of 
skewness preference (see for instance Arditti (1967), Kraus and Litzenberger (1976), 
Cooley (1977), Friend and Westerfield (1980), and Harvey and Siddique, 2000). 
 We analyze if the value weighted CRSP total return index, a popular proxy for 
the stock market portfolio, is TSD efficient. To implement the TSD criterion, we first 
extend Post’s (2003) empirical test for stochastic efficiency in several respects. First, 
we change the focus from second-order stochastic dominance (SSD), which imposes 
nonsatiation and risk aversion, to TSD, which also requires skewness preference. 
Second, we derive the asymptotic sampling distribution of the TSD test statistic 
under the true null of efficiency rather than the restrictive null of equal means that 
was used earlier. This extension is intended to avoid rejection of efficiency in cases 
where the market portfolio is efficient but the assets have substantially different 
means. Third, we derive a linear programming test for MV efficiency that can be 
compared directly with the TSD test. This allows us to attribute differences between 
the two tests to omitted moments exclusively.  
 With the resulting tests, we show that the CRSP index is TSD efficient 
relative to common benchmark portfolios formed on size, value, and momentum. By 
contrast, we find that the market portfolio is significantly MV inefficient, consistent 
with the existing evidence on size, value and momentum portfolios. The TSD 
criterion is especially successful in rationalizing MV inefficiencies that occur in the 
1970s and the early 1980s. This suggests that the asset pricing puzzles that exist in 
the MV framework can be explained by omitted return moments during this period. 
The difference with the results of Post (2003), who rejects market portfolio efficiency, 
can be attributed to the use of the restrictive null of equal means and the use of an 
extended sample period. 
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 The remainder of this chapter is structured as follows. Section 3.2 introduces 
the notation, assumptions, definitions and tests that will be used throughout the text. 
Section 3.3 discusses the data used in our analysis. Section 3.4 empirically analyzes 
the TSD efficiency of the market portfolio. Finally, Section 3.5 summarizes our 
conclusions and presents directions for further research. 

3.2 Methodology 

3.2.1 Assumptions 
We consider a single-period, portfolio-based model of investment that satisfies the 
following assumptions: 
 
Assumption 1 Investors choose investment portfolios to maximize the expected utility 
associated with the return of their portfolios. Investor preferences are characterized 
by nonsatiation, risk aversion and skewness preference. Throughout the text, we will 
denote utility functions by Pu →ℜ: , TSDUu ∈ , with TSDU  for the set of increasing 

and concave, once continuously differentiable, von Neumann-Morgenstern utility 
functions with convex marginal utility, and P  for a nonempty, closed, and convex 
subset of ℜ .5,6 For the sake of comparison, we will also use the subset of quadratic 
utility functions that underlies mean-variance efficiency, that is, 

{ }25.0)(: bxaxxuUuU TSDMV +=∈≡ . We follow the definition of MV efficiency by 

Hanoch and Levy (1970): a portfolio is efficient if and only if there exists an 
increasing and concave, quadratic utility function that rationalizes the portfolio. 
Further, we will use u ′  to denote the first-order derivative or marginal utility. If the 
utility function belongs to TSDU , then marginal utility is a positive and decreasing 

                                                 
5 Throughout the text, we will use Nℜ  for an N-dimensional Euclidean space, and Error! Objects cannot 
be created from editing field codes.denotes the positive orthant. Further, to distinguish between vectors 
and scalars, we use a bold font for vectors and a regular font for scalars. Finally, all vectors are column 
vectors and we use Error! Objects cannot be created from editing field codes. for the transpose of Error! 
Objects cannot be created from editing field codes.. 
6 Post (2003) does not assume that the utility function is continuously differentiable, so as to allow for, 
for instance, piecewise linear utility functions. However, in practice, we typically cannot distinguish 
between a kinked utility function and a smooth utility function with rapidly changing marginal utility. 
Nevertheless, using subdifferential calculus, we may obtain exactly the same characterization of the 
sampling distribution if utility is not continuously differentiable. Further, Post (2003) requires utility to 
be strictly increasing. To remain consistent with the original definition of TSD, we require a weakly 
increasing utility function. This is one of our reasons for adopting a novel standardization for the 
gradient vector; see Section IB. 
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function. In the special case of quadratic utility, marginal utility is a positive and 
decreasing, linear function.7  
 
Assumption 2 The investment universe consists of N-1 risky assets and a riskless 
asset. Throughout the text, we will use the index set { }1, ,NΙ ≡ L  to denote the 

different assets, with N for the riskless asset. The returns Nℜ∈x  are serially 
independent and identically distributed (IID) random variables with a continuous 
joint cumulative distribution function (CDF) : [0,1]NG ℜ → . 

  
Assumption 3 Investors may diversify between the assets, and we will use Nℜ∈λ  for 
a vector of portfolio weights. We focus on the case where short sales are not allowed, 
and the portfolio weights belong to the portfolio possibilities set 

{ }1: =ℜ∈≡Λ Τ
+ λλ eN , with e for a unity vector with dimensions conforming to the 

rules of matrix algebra. The simplex Λ  excludes short sales. Short selling is typically 
difficult to implement in practice due to margin requirements and explicit or implicit 
restrictions on short selling for institutional investors (see, for instance, Sharpe 
(1991) and Wang (1998)).8 
 
Under these assumptions, the investors’ optimization problem can be summarized as 

)()(max xx Gdu∫ Τ

Λ∈
λ

λ
. A given portfolio, say Λ∈τ , is optimal for a given utility 

function TSDUu ∈  if and only if the first-order condition is satisfied: 

 

 I0)())(( ∈∀≤−′∫ ΤΤ iGdxu i xxx ττ ,    (3.1)  

 
The inequality should hold with strict equality for all assets that are included in the 
evaluated portfolio, that is, 0:I i >∈ τi . If all assets are included in the evaluated 

portfolio ( 0>τ ), as is true for the value-weighted market portfolio, then inequality 
                                                 
7 Of course, if marginal utility is decreasing, then it can be positive only over a bounded interval. In our 
analysis, we require marginal utility to be positive and decreasing over the sample interval of returns on 
the market portfolio. 
8 Nevertheless, we may generalize our analysis to include (bounded) short selling. The TSD test is based 
on the first-order optimality conditions for optimizing a concave objective function over a convex set. The 
analysis can be extended to a general polyhedral portfolio possibilities set. We basically have to check 
whether there exists an increasing hyperplane that supports the extreme points of the portfolio 
possibilities set. One approach is to enumerate all extreme points and to include all extreme points as 
virtual assets. 
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(1) automatically reduces to I0)())(( ∈∀=−′∫ ΤΤ iGdxu i xxx ττ .9 Interestingly, this 

equality represents the least favorable case for our test of efficiency, that is, the 
probability of a Type I error (wrongly classifying an efficient portfolio as inefficient) 
achieves its maximum if all assets are included. The proof to Theorem 1 in Section 
3.2.3 uses this result. 
 Following the asset pricing terminology, we refer to violations of the first-
order condition as pricing errors. We may measure the maximum pricing error as:10 

 { })())((max),,( xxx GdxuuG ii ∫ ΤΤ

Ι∈
−′≡ τττζ  (3.2) 

Portfolio Λ∈τ  is optimal relative to TSDUu ∈  if and only if 0),,( =uGτζ . The TSD 

efficiency criterion basically checks if this condition is satisfied for some TSDUu ∈ . 

Similarly, the MV efficiency criterion checks if the first-order condition is satisfied for 
some MVUu ∈ . To test for TSD efficiency or MV efficiency, we introduce the following 

measure: 
 

 ),,(min),,( uGUG
Uu

ττ ζξ
∈

≡ .     (3.3) 

 
with },{ MVTSD UUU ∈ . The efficiency criteria can equivalently be formulated in terms 

of the set of utility functions that rationalize the evaluated portfolio: 
 

 { }0),,(:),,( =∈≡Ψ uGUuUG ττ ζ .    (3.4) 

 
Note that the evaluated portfolio may be optimal for multiple utility functions, and 
hence ),,( UGτΨ  may contain multiple elements. 

 
                                                 
9 This equality is a variation to the well-known Euler equation Error! Objects cannot be created from 
editing field codes.. 
10 Our focus on the maximum error reflects the short sales restriction. A negative ‘pricing error’ for a 
given asset does not constitute a violation of the first-order condition if the asset is not included in the 
evaluated portfolio (τi =0), as the investor can then improve the evaluated portfolio only by short selling 
the asset (which is not allowed) and not by reducing the weight of the asset in the portfolio. By contrast, 
a positive error is always problematic, because an investor can then improve the evaluated portfolio by 
increasing the weight of the asset and decreasing the weight of the other assets included in the portfolio. 
Of course, we generally do not know the number or the identity of the positive pricing errors in advance. 
However, the maximum pricing error is always positive. 
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Definition 1 Portfolio Λ∈τ  is efficient if and only if it is optimal for at least some 
Uu ∈ , },{ MVTSD UUU ∈ , that is, 0),,( =UGτξ , or, equivalently, ),,( UGτΨ  is non-

empty. Portfolio Λ∈τ  is inefficient if and only if it is not optimal for all Uu ∈ , that 
is, 0),,( >UGτξ , or, equivalently, ),,( UGτΨ  is empty. 

 
To test the null of efficiency, that is, 0),,(:0 =UGH τξ , we need full information on 

the CDF )(xG . In practical applications, )(xG  generally is not known and 

information is limited to a discrete set of T  time series observations.  
 
Assumption 4 The observations are serially independently and identically distributed 
(IID) random draws from the CDF. Throughout the text, we will represent the 
observations by the matrix )( 1 Txx L≡Χ , with Τ≡ )( 1 Nttt xx Lx . Since the timing of 

the draws is inconsequential, we are free to label the observations by their ranking 
with respect to the evaluated portfolio, that is, τττ ΤΤΤ <<< Txxx L21 .  

 
Using the observations, we can construct the following empirical distribution function 
(EDF): 
 

 ( )xxx ≤≡ ∑
=

t

T

tT
F

1

11)(Χ , (3.5) 

 
Since the observations are assumed to be serially IID, )(xΧF  is a consistent 

estimator for )(xG , and we may use ),,( UFΧτξ  as a consistent estimator for 

),,( UGτξ .  

3.2.2 Linear programming test statistics 
Following Post (2003), we may derive the following linear programming formulation 
for ),,( TSDUFΧτξ :11 

                                                 
11 This LP problem can be solved with minimal computational burden, even with spreadsheet software 
run on a desktop computer. Nevertheless, for applications where the number of time-series observations 
(T) is very large (for example, thousands of observations), it is useful to use a simplified formulation. A 
simplified version can be obtained by using Error! Objects cannot be created from editing field codes., 
with Error! Objects cannot be created from editing field codes. and Error! Objects cannot be created from 
editing field codes.. Specifically, substituting Error! Objects cannot be created from editing field codes. in 
Equation (3.6) and rearranging terms yields 
 Error! Objects cannot be created from editing field codes.. (3.6’) 
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In this formulation, β  represents the gradient vector ΤΤΤ ′′ ))()(( 1 ττ Tuu xx L  for some 

well-behaved utility function TSDUu ∈ . TSDΒ  represents the restrictions on the 

gradient vector that follow from the assumptions of nonsatiation, risk aversion, 

skewness preference and the standardization 1/)(
1

=′ Τ

=
∑ Tu t

T

t

τx  

 Note that the original test of Post (2003, Thm 2) uses the standardization 

1=Tβ  rather than 1/
1

=∑
=

T
T

t
tβ . The original standardization has an important 

drawback. Specifically, the higher the degree of risk aversion of the utility function, 
the higher the values of all betas. Hence, increasing the level of risk aversion tends to 
inflate the value of test statistic relative to the case with risk neutrality ( e=β ). This 

lowers Post’s (2003, Thm 3) p-value for testing efficiency, possibly leading to 
erroneous rejections of efficiency, as the p-value is based on the risk neutral case and 
it does not account for the level of the betas. To circumvent this problem, we use the 

standardization 1/
1

=∑
=

T
T

t
tβ  in this study.12 This standardization allows for risk 

aversion without inflating the test statistic, because the average level of the betas is 
fixed. Also, the novel standardization allows utility to be weakly increasing, as some 
betas may equal zero. 

                                                                                                                                                
 
While Equation (3.6) involves T variables and N+2T-2 constraints, Equation (3.6’) involves T variables 
and only N+T-1 constraints, which yields a large reduction in computational burden. We have effectively 
removed the T-1 restrictions Error! Objects cannot be created from editing field codes., which are now 
satisfied by construction, as Error! Objects cannot be created from editing field codes.and Error! Objects 
cannot be created from editing field codes. imply Error! Objects cannot be created from editing field 
codes.. This simplification is similar to the one used by Post (2003, Proof to Thm 2) to arrive at his 
simplified dual test statistic. 
12 Also, we will derive the p-value under the null of efficiency rather than the null of equal means.  
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 Using linear interpolation, we may recover a full marginal utility function 
from the optimal solution ( *β ) as 
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A full utility function is then found as dzzpxp
x

z
∫
−∞=

′≡ )()( ** ββ . 

We can derive a linear programming test for mean-variance efficiency in the 
spirit of (3.6). As discussed in Section 3.2.1, mean-variance analysis is the special 
case of TSD where utility takes a quadratic form and marginal utility takes a linear 
form. Put differently, the gradient vector β  must belong to 

{ }Θ∈∀+=ℜ∈∩Β≡Β Τ tbat
T

TSDMV τβ txβ: . Hence, we obtain a linear 

programming test for MV efficiency by simply adding the restrictions 
Θ∈∀+= Τ tbat τtxβ :13  

 

 =),,( MVUFΧτξ






 Ι∈∀≥+−∑

=

Τ

Β∈
iTxit

T

t
tt

MV

0/)(:min
1,

θβθ
θ

τ
β

x .  (3.9) 

 
This test statistic differs in several respects from the traditional MV efficiency tests, 
such as the Gibbons, Ross and Shanken (1989) or GRS test. First, the test is 
consistent with TSD by adhering to the Hanoch and Levy (1969) definition of MV 
efficiency. For example, the GRS test may classify the market as inefficient if all 
assets have the same mean. However, in this case, the market is TSD efficient, 
because the market is optimal for the risk neutral investor. Second, our MV test 
excludes short selling; see Section 3.2.1. Third, our test focuses on the maximum 

                                                 
13 In fact, the additional restrictions simplify the problem, because there are now only two unknown 
variables. Substituting Error! Objects cannot be created from editing field codes. in equation (3.6) and 
rearranging terms, we find Error! Objects cannot be created from editing field codes.Error! Objects 
cannot be created from editing field codes.. The full utility function is simply Error! Objects cannot be 
created from editing field codes., with Error! Objects cannot be created from editing field codes.for the 
optimal solution. 
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pricing error rather than a weighed average of all squared pricing errors, so as to 
allow for the case where not all assets are included in the evaluated portfolio. 

3.2.3 Asymptotic sampling distribution 
Our objective is to test the null hypothesis that Λ∈τ  is TSD or MV efficient, that is, 

0),,(:0 =UGH τξ , },{ MVTSD UUU ∈ . Again, since the observations are serially IID, 

ΧF  is a consistent estimator for )(xG , and ),,( UFΧτξ  is a consistent estimator for 

),,( UFΧτξ . However, )(xΧF  generally is very sensitive to sampling variation and 

the test results are likely to be affected by sampling error in a nontrivial way. The 
applied researcher must therefore have knowledge of the sampling distribution in 
order to make inferences about the true efficiency classification. Post (2003) derived 
the asymptotic sampling distribution of his SSD test statistic under the null 
hypothesis that all assets have the same mean, that is, ex µ=][:1 EH , ℜ∈µ . In 

general, 1H  gives a sufficient condition for the true null of efficiency, that is, 0H . In 

fact, under the null, all portfolios Λ∈λ  are efficient, because they are optimal for 
investors with utility function xxv ≡)( , that is, the risk neutral investors. However, 

1H  does not give a necessary condition for 0H , and rejection of 1H  generally does not 

imply rejection of 0H  and there is no guarantee that 1H  is sufficiently close to 0H . 

Hence, the sampling distribution 1H  may lead to erroneous conclusions about 0H . 

The purpose of this section is to analyze the asymptotic sampling distribution of 
0),,( =UGτξ  under the true null of efficiency rather than the null of equal means.  

 Using )),,(,( uGτΣ0⋅Φ  for a N-dimensional multivariate normal distribution 

function with mean 0  and (singular) variance-covariance matrix 
ΤΤΤ −−≡ ))(,()(),,( τττ ee ΙΩΙΣ uGuG , with ≡),( uGΩ )())(( 2 xxxx dGu ΤΤ∫ ′ τ , the 

following theorem characterizes the asymptotic sampling distribution under the true 
null: 

 

THEOREM 1 Asymptotically, the p-value ]),,(Pr[ 0HyUF >Χτξ , },{ MVTSD UUU ∈ , 

0≥y , is bounded from above by ≡Γ )/),,(,( TuGy τΣ ))/),,(,(1( ∫
≤

Φ−
ez

z
y

TuGd τΣ0  for 

all ),,( UGu τΨ∈ .  
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The theorem provides an upper bound to the p-value ]),,(Pr[ 0HyUF >Χτξ . It is 

difficult to derive the exact p-value, because ),,( UGτΨ  generally contains multiple 

elements under 0H . Also, the theorem considers the least favorable case where all 

assets are included in the evaluated portfolio, and )/),,(,( TuGy τΣΓ  represents an 

upper bound for the p-value in cases where some assets are excluded. While it is 
possible to identify an element of ),,( UGτΨ  (see below), we generally do not know 

the element that minimizes the p-value )/),,(,( TuGy τΣΓ . Nevertheless, the upper 

bound can be used in the same way as the true p-value. Specifically, we may compare 
)),,(),,,(( uGUF ττ ΣΧξΓ , ),,( UGu τΨ∈ , with a predefined level of significance 

]1,0[∈a , and reject efficiency if auGUF ≤Γ )),,(),,,(( ττ ΣΧξ . Equivalently, we may 

reject efficiency if the observed value of ),( ΧFτξ  is greater than or equal to the 

critical value )),,(,(1 uGa τΣ−Γ  })),,(,(:{inf
0

auGyy
y

≤Γ≡
≥

τΣ , ),,( UGu τΨ∈ . The 

statistical size or the probability of a Type I error (wrongly classifying an efficient 
portfolio as inefficient) of this approach is almost always smaller than the nominal 
significance level a. 
 Two results are useful for implementing the above approach in practice. First, 
computing p-values and critical values requires the variance-covariance matrix 

),,( uGτΣ  for some ),,( UGu τΨ∈ . Unfortunately, G  is not known. Nevertheless, we 

know that ΧF  converges to G  and that )( *βxp  asymptotically belongs to ),,( UGτΨ  

under 0H . Hence, we may estimate ),,( uGτΣ  in a distribution-free and consistent 

manner using the sample equivalent ))(,,( *βτ xpFΧΣ  with elements 

=))(,,( *βτ xpFij Χω  Txx t

T

t
jttitt /))((

1

2* ττ Τ

=

Τ∑ −− xxβ , Ι∈ji, .  

 Second, we may approximate )))(,,(),,,(( *βττ xpFUF ΧΧ ΣξΓ , using Monte-

Carlo simulation. In this chapter, we will use the following approach. We first 
generate S=10,000 independent standard normal random vectors 1−ℜ∈ N

sw , 

},,1{ Ss L∈ , using the RNDN function in Aptech Systems’ GAUSS software. Next, 

each random vector sw  is transformed into a multivariate normal vector Nz ℜ∈s  

with variance-covariance matrix ),,( uGτΣ  by using ss uG wez ),()( DΤ−= τΙ , where 
)1(),( −×ℜ∈ NNuGD  is a matrix with the first )1( −N  rows equal to the Cholesky factor 

of the nonsingular )1()1( −×− NN  variance-covariance matrix of risky assets, and 

with zeros for the N th row. Finally, )),,(),,,(( uGUF ττ ΣΧξΓ  is approximated by the 
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relative frequency of the transformed vectors sz , },,1{ Ss L∈ , that fall outside the 

integration region { }ezz N y≤ℜ∈ : . 

 Theorem 1 subtly differs from Post’s characterization of the sampling 
distribution under 1H . That characterization used the variance-covariance matrix 

),,( vGτΣ , with xxv =)( , in place of ),,( uGτΣ . This replacement is valid only if 

),,( UGv τΨ∈ , that is, if the evaluated portfolio is optimal for the risk neutral 

investor. This reflects the replacement of the null of efficiency ( 0H ) by the null of 

equal means ( 1H ); under 1H , all portfolios are optimal for the risk neutral investor. 

Obviously, it is relatively simple to reject 1H  and hence the p-values and critical 

values under this null are likely to underestimate the true values under 0H . 

Consequently, a test procedure that uses the sampling distribution under 0H  will 

involve a more favorable statistical size (=relative frequency of Type I error) and a 
less favorable statistical power (=one minus the relative frequency of Type II error) 
than a test procedure that uses the sampling distribution under 1H . 

3.2.4 Simulation experiment 
Using a simulation experiment, Post (2003, Section IIIC) demonstrates that his SSD 
test procedure based on 1H  involves relatively low power in small samples generated 

from the return distribution of the well-known 25 Fama and French stock portfolios 
formed on size and value. Since 0H  is more general than 1H , the power of our test 

procedure based on 0H  will be not as good. Nevertheless, the procedure may be 

sufficiently powerful to be of practical use for data sets with a smaller cross-section. 
The relatively low power in the Post experiment probably reflects the difficulty of 
estimating a 25-dimensional multivariate return distribution in a nonparametric 
fashion. It is likely that the power increases (at an increasing rate) as the length of 
the cross-section is reduced to for example ten benchmark portfolios, which is 
common in asset pricing tests. 
 To shed some light on the statistical properties of our test procedure based on 

0H  in smaller cross-sections, we extend the original simulation experiment. The 

simulations involve ten assets with a multivariate normal return distribution. The 
joint population moments are equal to the sample moments of the monthly excess 
returns of ten Fama and French stock portfolios formed on BE/ME during Post’s 
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sample period from July 1963 to October 2001.14 We will analyze the statistical 
properties of our TSD test procedure (reject efficiency if and only if 

axpFUF TSD ≤Γ ))(,,(),,,(( *βττ ΧΧ Σξ ) and our MV test procedure (reject efficiency if 

and only if axpFUF MV ≤Γ ))(,,(),,,(( *βττ ΧΧ Σξ ) by the rejection rates of these 

procedures for certain test portfolios in random samples drawn from this 
multivariate normal distribution.  
 For the true distribution, the equal weighted portfolio (EP) is known to be MV 
and TSD inefficient.15 Hence, we may analyze the statistical power of the TSD and 
MV test procedures by the ability to correctly classify the EP inefficient. By contrast, 
the ex ante tangency portfolio (TP) is MV and TSD efficient and we may analyze the 
statistical size by the relative frequency of random samples in which this portfolio is 
wrongly classified as inefficient.16 
 We draw 10,000 random samples from the multivariate normal population 
distribution through Monte-Carlo simulation. To each sample, we also add 
‘observations’ for a riskless asset with a return of zero in every month (recall that we 
use excess returns). For every random sample, we apply the MV and TSD test 
procedures to the efficient TP and the inefficient EP. For both procedures, we 
compute the size as the rejection rate for TP and the power as the rejection rate for 
EP. This experiment is performed for a sample size (T) of 25 to 1,500 observations 
and for a significance level (a) of 2.5, five, and ten percent. 
 Figure 3.1 shows the results. The size is generally substantially smaller than 
the nominal level of significance a, and it converges to zero. In fact, using a level of 
significance of ten percent, the size is smaller than five percent for samples as small 
as 100 observations. This reflects our focus on the least favorable distribution, which 
minimizes Type I error.  
 As discussed in Section 3.2.3, ),,( UFΧτξ , },{ MVTSD UUU ∈ , converges to 

),,( UGτξ , and we expect minimal Type II error in large samples. Indeed, for both 

procedures, the power goes to unity as we increase the sample size. However, in small 
samples, the TSD procedure is substantially less powerful than the MV procedure. 
                                                 
14 The power depends on the degree of inefficiency of the evaluated portfolio. We selected the set of ten 
BE/ME portfolios, because the degree of inefficiency of the equal weighted portfolio is ‘medium’; it is 
higher than for the ten size portfolios, but lower than for the momentum portfolios.  
15 It is possible to achieve a substantially higher mean given the standard deviation of EP and hence EP 
is MV inefficient. Since we assume a normal distribution in the simulations, the TSD criterion coincides 
with the MV criterion and EP is also TSD inefficient. 
16 The tangency portfolio consists of 18.22%, 2.04% and 79.74% invested in the fifth, sixth and eight 
BE/ME portfolios respectively. 



50  Chapter 3  

 
 

For example, using a ten percent significance level, the MV procedure achieves a 
rejection rate of about 50 percent already for samples of about 250 observations. By 
contrast, The TSD procedure achieves this rejection rate only for samples of about 
400 observations. At that sample size, the rejection rate of the TSD procedure 
increases rapidly. Interestingly, this sample size is not uncommon for this type of 
application. For example, our empirical tests will use samples of 378 to 840 monthly 
observations. Hence, the TSD procedure appears sufficiently powerful to be of 
practical use in this type of application. 
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3.2.5 Further tests 
Our main results rest on the MV and TSD tests derived in Section 3.2.2. 
Nevertheless, we will also make use of three other tests in order to interpret our test 
results. First, as discussed in Section 3.2.2, our MV tests uses the Hanoch-Levy 
definition of MV efficiency that requires nonsatiation. To determine if the MV results 
are due to the difference between this definition and the traditional MV efficiency 
definition (TMV, which does not require nonsatiation), we consider two alternative 
tests that do adhere to the traditional definition. First, we apply TMV, a relaxed 

Figure 3.1: Statistical properties of the TSD test procedure. The figure displays the size and power of the 
test procedures for various numbers of time-series observations (T) and for a significance level (a) of 2.5, 
five and ten percent. The results are based on 10,000 random samples from a multivariate normal 
distribution with joint moments equal to the sample moments of the monthly excess returns of the ten 
B/M portfolios and the U.S. Treasury bill for the period from July 1963 to October 2001. The dark lines 
show the results for the TSD test, and the gray lines show the results for the MV test. Size is measured 
as the relative frequency of random samples in which the efficient tangency portfolio (TP) is wrongly 
classified as inefficient. Power is measured as the relative frequency of random samples in which the 
inefficient equally weighted portfolio (EP) is correctly classified as inefficient. 
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version of our MV test that drops nonsatiation.17 In addition, we also apply the well-
known GRS test of market efficiency. This test not only drops nonsatiation, but it also 
allows for short sales. Finally, we apply Post’s (2003) original SSD efficiency test. 
Recall that this test uses the sampling distribution under the null of equal means 
rather than the null of efficiency and hence it may erroneously reject efficiency if the 
assets have different means. 

3.3 Data 
We analyze if the CRSP all-share index is efficient. This value-weighted index 
consists of all common stocks listed on NYSE, AMEX, and Nasdaq. To proxy the 
investment universe of individual assets, we use three different sets of ten portfolios 
that cover the three well-known puzzles of size, value, and momentum. To calculate 
monthly excess returns, we subtract the risk-free rate defined as the U.S 30 day T-
bill rate maintained by Ibbotson. 
 First, we use the widely used decile portfolios formed on market 
capitalization. Second, we use ten benchmark portfolios formed on book-to-market-
equity ratio (value). The size and value portfolios are formed using NYSE decile 
breakpoint data for the total sample period also when (smaller) Nasdaq and AMEX 
shares are added to the CRSP database. For detailed data description and selection 
procedures we refer to Fama and French (1992) (1993). In our analysis of size and 
value, we focus on a long 70-year sample period starting in January 1933 to 
December 2002 (840 months). Third, we use ten portfolios sorted on price momentum 
as described in Jegadeesh and Titman (2001). This benchmark set ranges from 
January 1965 to December 1998 (408 months). These three sets of decile portfolios 
capture the separate effects of size, value and momentum. 
 It is perhaps even more interesting to consider the combined effect of the 
different puzzles. For this purpose, we also analyze the 25 Fama and French (FF25) 
benchmark portfolios formed on size and value and the 27 Carhart (C27) portfolios 
formed on value, size, and momentum.18 For the former benchmark set, data are 
available also from January 1933 to December 2002 (840 months). For the latter 
benchmark set, data are limited to the period ranging from July 1963 to December 

                                                 
17 This means that we no longer require the gradient vector to be non-negative. It is straightforward to 
verify that this yields a necessary and sufficient test for mean-variance efficiency in the traditional 
definition but with short sales excluded. 
18 We thank Kenneth French, Narasimhan Jegadeesh, and Mark Carhart for generously providing us 
with these data. 
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1994 (378 months). These two benchmark data sets allow us to determine if the same 
type of utility function can explain the various puzzles combined. Also, they allow us 
to analyze if the TSD criterion can capture the interaction between the size, value 
and momentum effects that may occur if investors can adopt a mixed strategy of 
investing in for instance small value stocks or small value winners stocks. 
 One should bear in mind that empirical research carried out before 1999 could 
give different results due to the ‘delisting bias’ first noticed by Shumway (1997). 
Especially Nasdaq listed stocks with low market capitalizations were severely 
affected by this bias (Shumway and Warther (1999)). Since 1999, CRSP has carried 
out a series of projects to improve the quality of the delisting returns database 
eliminating the delisting bias (CRSP (2001)).19 Because momentum (single and triple 
sorted) portfolios rely on older versions of the CRSP database, we treat these with 
more caution than the size and value sorted portfolios. 
 Table 3.1 gives descriptive statistics for the five sets of benchmark portfolios: 
ten size portfolios, ten value portfolios, ten momentum portfolios, 25 size-value 
portfolios (FF25) and 27 value-size-momentum portfolios (C27). Clearly, the returns 
of these portfolios do not obey a normal distribution. This provides an important 
rationale for adopting the TSD test, which account for the full return distribution 
rather than mean and variance alone. 

                                                 
19 For example, consider the Fama and French (1996) sample period ranging from July 1963 to 
December 1993 (366 months). In FF Table I the average monthly excess return on the BV (SG) portfolio 
was 0.71 (0.31), but with the new 2002 database (employed in this study) this number is downwards 
revised to 0.59 (0.25). 



SD efficiency of the market portfolio  53 

 
 Panel A: Single sort: Size, BM (T=840 months) 

  Mean Stdev. Skewness Kurtosis Min Max 

 Market 0.714 4.937 0.156 9.18 -23.67 38.17 

Small 1.328 9.425 2.988 29.49 -34.59 95.97 
2 1.173 8.368 2.399 28.24 -32.93 33.30 
3 1.107 7.432 1.599 21.00 -29.65 95.19 
4 1.047 7.041 1.311 16.88 -30.07 78.59 
5 1.019 6.706 1.086 15.77 -28.89 64.25 
6 0.962 6.298 0.799 13.05 -26.89 57.52 
7 0.928 6.105 0.774 13.77 -29.07 53.07 
8 0.854 5.638 0.379 10.11 -24.90 54.42 
9 0.811 5.327 0.656 12.95 -23.80 45.86 
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Big 0.657 4.665 0.093 7.95 -22.99 49.10 

Growth 0.630 5.366 0.193 7.32 -23.30 38.45 
2 0.695 5.104 -0.192 6.68 -25.19 71.70 
3 0.676 4.967 -0.196 6.87 -26.47 28.74 
4 0.723 5.365 1.210 19.30 -24.26 27.24 
5 0.843 4.982 0.752 13.89 -24.58 56.29 
6 0.898 5.276 0.621 13.40 -26.20 46.15 
7 0.912 5.778 1.424 18.55 -25.62 48.79 
8 1.077 5.910 1.074 14.79 -29.08 59.17 
9 1.136 6.943 1.470 18.83 -30.87 52.43 
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Value 1.164 8.215 1.496 18.97 -45.76 62.24 

 Panel B: Single sort: Momentum (T=408 months) 

  Mean Stdev. Skewness Kurtosis Min Max 

 Market 0.513 4.472 -0.505 5.42 -23.09 16.05  

Loser -0.105 6.878 0.001 5.20 -28.59 28.98 
2 0.374 5.674 -0.085 5.50 -22.68 20.05 
3 0.520 5.156 -0.150 5.80 -23.01 26.82 
4 0.586 4.873 -0.334 6.47 -25.18 25.13 
5 0.606 4.709 -0.491 6.87 -25.90 23.85 
6 0.640 4.701 -0.694 6.93 -26.61 22.51 
7 0.666 4.770 -0.923 7.26 -27.80 20.72 
8 0.750 4.995 -1.041 7.30 -29.18 18.98 
9 0.860 5.391 -1.038 6.73 -30.27 17.31 
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Winner 1.123 6.561 -0.882 5.52 -32.74 15.84 

 Panel C: Double sort, Size/Value (T=840 months) 

  Mean Stdev. Skewness Kurtosis Min Max 

 Market 0.714 4.937 0.156 9.18 -23.67 38.17 

S G 0.575 11.006 1.872 17.81 -42.95 99.95 

al ue
 

P S 2 0.992 9.193 2.119 22.22 -34.49 87.77 

Table 3.1
Descriptive Statistics Data Sets 

The table shows descriptive statistics for the monthly excess returns of the value-weighted CRSP all-
share market portfolio and the ME10 (size), BM10 (value), past six month returns (momentum), 
size/value (FF25) and value/size/momentum (C27) sorted data sets. The size, value and FF25 data are 
taken from the homepage of Kenneth French, the momentum data are from Jegadeesh (2001) and the 
C27 data are from Carhart (1997).The sample period is from January 1933 to December 2002 (T=840) 
for the size, value and FF25 data sets, from January 1965 to December 1998 (T=408) for the momentum 
data set and from July 1963 to December 1994 (T=378) for the C27 data set. Excess returns are 
computed from the raw return observations by subtracting the return on the one-month US T-bill.  
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S 3 1.229 8.513 2.039 20.36 -36.52 77.98 
S 4 1.426 8.017 3.125 41.40 -34.00 105.62 
S V 1.523 8.937 3.346 38.38 -34.15 105.30 
2 G 0.734 7.960 0.462 8.27 -33.32 54.01 
2 2 1.049 7.286 1.760 24.40 -32.37 81.58 
2 3 1.170 6.974 2.300 30.12 -28.27 81.55 
2 4 1.242 6.930 1.860 23.70 -28.28 71.97 
2 V 1.329 7.816 1.204 14.71 -34.41 57.98 
3 G 0.802 7.244 0.930 12.36 -30.03 59.99 
3 2 0.989 6.240 0.424 10.79 -29.49 44.72 
3 3 1.030 6.182 1.059 16.17 -28.34 56.03 
3 4 1.136 6.087 1.073 15.04 -24.99 54.46 
3 V 1.250 7.410 1.029 13.98 -36.04 62.32 
4 G 0.731 5.961 -0.073 5.84 -26.02 32.80 
4 2 0.812 5.870 0.966 17.24 -29.45 58.25 
4 3 1.010 5.696 0.500 12.02 -27.13 48.35 
4 4 1.003 5.997 0.694 11.10 -29.48 47.42 
4 V 1.183 7.841 1.595 20.44 -34.75 75.34 
B G 0.662 5.078 0.128 7.43 -22.61 35.27 
B 2 0.648 4.799 -0.033 6.94 -23.53 27.95 
B 3 0.819 4.915 0.771 13.76 -22.46 46.40 
B 4 0.891 5.823 1.470 19.37 -27.14 60.77 

 

B V 0.943 7.083 0.799 13.92 -34.62 56.24 

 Panel D: Triple sort, Value/Size/Momentum (T=378 months) 

  Mean Stdev. Skewness Kurtosis Min Max 

 Market 0.387 4.399 -0.394 5.60 -23.09 16.05 

G S L -0.279 6.644 0.003 5.78 -31.41 30.45 
G S M 0.349 6.070 -0.461 6.19 -31.33 27.54 
G S W 0.933 6.755 -0.704 5.49 -33.52 19.45 
G M L -0.089 5.952 0.088 5.76 -26.49 27.54 
G M M 0.143 5.341 -0.461 5.21 -26.81 18.96 
G M W 0.895 6.033 -0.550 5.26 -29.90 20.73 
G B L 0.105 5.218 0.178 5.21 -20.40 25.40 
G B M 0.250 4.507 -0.161 4.88 -20.73 17.86 
G B W 0.611 5.348 -0.298 5.03 -23.68 21.21 
N S L 0.306 5.975 0.474 8.36 -24.81 37.51 
N S M 0.631 4.957 -0.201 8.04 -27.05 27.02 
N S W 1.157 6.088 -0.730 6.57 -32.60 23.17 
N M L 0.400 5.396 0.501 6.47 -19.08 31.20 
N M M 0.513 4.498 -0.344 7.72 -25.68 23.05 
N M W 0.772 5.325 -0.896 6.68 -30.54 17.52 
N B L 0.438 4.801 0.477 5.29 -19.66 21.74 
N B M 0.367 4.211 0.158 5.31 -15.57 21.03 
N B W 0.595 4.856 -0.347 5.56 -24.00 19.95 
V S L 0.552 6.440 0.974 10.77 -28.26 45.34 
V S M 1.062 5.583 0.199 9.22 -29.09 33.99 
V S W 1.341 6.246 -0.289 7.56 -32.00 30.20 
V M L 0.582 6.078 0.469 7.68 -25.79 38.07 

VV M M 0.909 5.303 -0.016 9.04 -28.30 31.03 
V M W 1.287 5.881 -0.806 8.23 -33.86 25.76 
V B L 0.600 5.569 0.718 7.41 -16.99 35.34 
V B M 0.589 4.752 -0.053 5.72 -23.47 20.41 
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V B W 0.923 5.352 -0.254 5.85 -24.78 22.84 
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Figure 3.2 shows the five benchmark sets in mean-standard deviation space, 
including the individual assets (the clear dots), the market portfolio (the black 
square), the MV tangency portfolios (black dots), and the mean-standard deviation 
frontier (with and without the risk free asset). Clearly, the market portfolio is (ex 
post) inefficient in terms of mean-variance analysis relative to all benchmark sets. 
The distance from the mean-standard deviation frontier is smallest for the size 
portfolios and it is largest for the momentum portfolios. For example, in the 
momentum data set, it is possible to achieve an average monthly return of 0.33% per 
month (or 4.0% per annum) in excess of the market average and given the market 
standard deviation. If size, value and momentum are combined the distance to the 
MV-frontier increases. Of course, these ex post mean-standard deviation diagrams do 
not reveal if the MV classification is statistically significant. Also, the diagrams are 
silent on return moments other than mean-variance (such as higher-order central 
moments and lower partial moments). The next section gives more details on the 
mean-variance efficiency and TSD-efficiency of the market portfolio. 
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Figure 3.2: Mean-standard deviation diagrams. This figure shows the mean-standard deviation diagram 
for the size, value, momentum, FF25 and C27 data sets. We show the mean excess return and the 
standard deviation of the individual benchmark portfolios (clear dots) and the efficient frontier with and 
without the risk-free asset. The market portfolio is labelled “M” and the mean-variance tangency 
portfolio “TP”.  
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3.4 Results 

3.4.1 Full sample results 
Table 3.2 summarizes the results for the full sample from January 1933 to December 
2002. The table includes a separate cell for every combination of the five data sets 
(size, value, momentum, FF25 and C27) and the five efficiency tests (TSD, MV, Post, 
TMV and GRS). Each cell includes the value of the test statistic and the associated p-
value. Also, each cell includes the identity of the optimal portfolio (OP), or the 
benchmark portfolio with the largest pricing error. 
 

 
 

 
 

 
 Panel A:  

TSD versus MV  Panel B:  
Alternative tests 

 

 N T   TSD MV  Post TMV GRS  

Size 10 840 
Theta 
p-value 
OP 

 0.214 
0.251 
Small 

0.341 
0.049 
Small 

 0.184 
0.231 
Small 

0.222 
0.144 
Small 

0.314 
0.391 
Small 

 

Value 10 840 
Theta 
p-value 
OP 

 0.205 
0.409 

8 

0.317 
0.032 

8 

 0.211 
0.135 

8 

0.291 
0.041 

8 

0.312 
0.022 

8 
 

Mom. 10 408 
Theta 
p-value 
OP 

 0.244 
0.256 

Winner 

0.349 
0.051 

Winner 

 0.215 
0.175 

Winner 

0.349 
0.051 

Winner 

0.455 
0.000 

Winner 
 

FF25 25 840 
Theta 
p-value 
OP 

 0.370 
0.293 

14 

0.579 
0.014 

SV 

 0.363 
0.140 

SV 

0.411 
0.075 

SV 

0.556 
0.000 

SV 
 

 
C27 

 
27 378 

Theta 
p-value 
OP 

 0.429 
0.295 
VSW 

0.795 
0.000 
VSW 

 0.469 
0.048 
VSW 

0.795 
0.000 
VSW 

0.902 
0.000 
VSW 

 

 
Panel A compares the results for the MV and TSD criteria. Using a significance level 
of ten percent, the market portfolio is highly and significantly MV inefficient relative 
to all benchmark sets. For example, we find a test statistic of 0.317 in the value data 
set. This figure can be interpreted as a maximal pricing error of 0.317 percent per 
month (or 3.8% per annum). The associated p-value is 0.032, suggesting that the 
market is significantly MV inefficient relative to the value portfolios. Similar results 

Table 3.2
Efficiency of the stock market portfolio 

We test if the CRSP all-share index is TSD and MV efficient in the size, value, momentum, FF25 and 
C27 data sets. Results are shown for the full samples. Each cell contains the maximum pricing error 
(theta), the associated p-value, and the identity of the optimal portfolio (OP) or the portfolio with the 
largest pricing error. Cells are coloured grey if the p-value falls below 10% and efficiency is rejected with 
at least 90% confidence. Panel A includes our main results and compares the results of our TSD and MV 
tests. Panel B shows the outcomes of three alternative tests: the original Post (2003) test, the traditional 
mean variance (TMV) test (without the restriction of nonsatiation), and finally the Gibbons, Ross, 
Shanken (1989) test. The GRS p-value corresponds to the optimally weighted minimized sum of squared 
errors. 

Formatted: Figure text
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are found for the other four data sets. In other words, the three asset pricing puzzles 
(size, value, and momentum) are clearly present in our data sets. The strongest 
evidence against MV efficiency is found in the triple-sorted C27 data set that 
combines the three puzzles, with a maximum pricing error of 0.795 (or 9.5% per 
annum) and a p-value of 0.000.  
 In contrast to the MV results, we find that the market portfolio is TSD-
efficient relative to all five benchmark sets; in all cases, the test statistic becomes 
insignificant. For example, for the value portfolios, the test statistic falls from 0.317 
to 0.205 (or 2.4% per annum) and the p-value increases from 0.032 to 0.409. Similar 
results are found for the other benchmark sets. For the triple-sorted C27 data set, the 
maximum pricing error falls from 0.795 to 0.429 (or 5.1% per annum) and the p-value 
increases from 0.000 to 0.295. Combined, the MV and TSD results suggest that 
omitted moments (such as higher-order central moments and lower partial moments) 
may explain MV inefficiency of the market portfolio.  
 Panel B of Table 3.2 includes the three alternative tests for market portfolio 
efficiency (see section 3.2.5). First, the panel shows the results of the Post (2003) test, 
which differs from our TSD test, because it focuses on SSD efficiency and it uses the 
restrictive null of equal means rather than the true null of efficiency. Clearly, using 
the wrong null lowers the p-values in all data sets (even though the SSD criterion has 
lower rejection rates than the TSD criterion). In fact, for the triple-sorted C27 data 
set, market portfolio efficiency is rejected with more than 90 percent confidence. 
However, efficiency cannot be rejected for the other four data sets, even if we use the 
Post test. These results help to understand the difference between our findings and 
the finding in Post (2003, Section IV) that the market portfolio is SSD inefficient 
relative to the FF25 portfolios (p-value was 0.031). First, including the pre-1963 data 
increases the p-value to 0.140 (was 0.031). Second, replacing the null of equal means 
with the null of efficiency further increases the p-value further to 0.293.20 
 Second, Panel B includes the results for the MV test after dropping the 
regularity condition of nonsatiation, which yields a test that is in line with the 
traditional definition of MV efficiency (TMV). The condition of nonsatiation is binding 
(the MV and TMV test results are different) for the size, value and FF25 data sets, 
but not for the momentum and C27 data sets. Presumably, this can be explained by 
the broad market return interval for the 1933-2002 period. During this period, the 
market return ranged from -/-23.67 to 38.17 percent. A quadratic utility function can 

                                                 
20 Rather than the TSD criterion, Post (2003) uses the SSD criterion, which does not require skewness 
preference. Using this criterion, the p-value in our application becomes even higher than reported here.  
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exhibit only little curvature if it is to be monotone increasing over such a broad 
interval. During the more recent periods for the momentum and C27 portfolios, the 
market return interval is narrower (-/-23.09% to 16.05%) and the two tests coincide. 
The effect of dropping nonsatiation is most substantial for the size data set. In fact, 
the size effect is no longer significant if we drop nonsatiation; the maximum pricing 
error falls from 0.341 (or 4.1% per annum) to 0.222 (or 2.7% per annum) and the p-
value increases from 0.049 to 0.144. By contrast, the value and momentum effects 
remain strong and significant. 
 Third, we give the results of the GRS test. Although this test differs in various 
ways from our TMV test, the results are fairly similar. We find slightly higher 
maximal pricing errors and lower levels of significance. However, the market 
portfolio is efficient relative to size portfolios and inefficient relative to all other 
benchmark sets. It is encouraging to see that inferences about mean-variance 
efficiency in our study are not heavily affected by the exact test procedure. 

3.4.2 Downside risk 
How can we explain the differences between the MV and the TSD results? In 
principle, any omitted higher-order central moment (other than mean and variance) 
or lower partial moment could explain why the market seems MV inefficient but TSD 
efficient. To gain further insight in what explains TSD efficiency, it is useful to look 

at Figure 3.3. This figure shows the optimal marginal utility function )( *βxp for the 

MV, TMV and TSD tests. As discussed in Section 3.2.2, this marginal utility function 
is the optimal solution for the utility gradient vector ( *β ). Two results are 

noteworthy. First, the figure shows that under the more restrictive MV criterion, the 
optimal marginal utility function for the size, value and FF25 data sets are not as 
steep as under the less restrictive TMV criterion, so as to ensure nonsatiation for the 
entire sample range of market returns. Second and most important, the TSD utility 
functions exhibit “crash-o-phobia” or a strong aversion for downside risk. For all five 
data sets, the optimal marginal utility function assigns a high weight to large losses. 
In case of the size, momentum, FF25 and C27 data set, the implicit utility function is 
very sensitive to losses that exceed about -/- 12 percent. In the value data set, the 
critical return level is even lower, at about -/- 20 percent. The linear marginal utility 
function is not sufficiently flexible to allow for these patterns of downside risk 
aversion. Hence, it seems that downside risk may explain why the market portfolio is 
MV inefficient. 
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Figure 3.3: Optimal marginal utility functions. This figure shows the optimal marginal utility functions 
)( *βxp′  for the MV, TMV and TSD tests and the size, value, momentum, FF25 and C27 data sets. The 

black line shows the marginal utility function under the TSD criterion, the dark grey line shows the 
linear marginal utility function under the TMV criterion, while the grey line shows the linear marginal 
utility function under the MV criterion (with nonsatiation over the sample range of market return). The 

marginal utility functions are standardized such that 1/)( *
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We do not intend to reduce investment risk to a single measure, because we believe 
that risk is a multi-dimensional concept; in fact, this is one of our reasons for using 
the TSD criterion in the first place. Still, it is useful to quantify downside risk so as to 
illustrate its explanatory power for TSD efficiency. It is especially useful to analyze 
the contribution of the tangency portfolio (TP) to the downside risk of the market 
portfolio. After all, the market portfolio is classified as MV inefficient because TP’s 
contribution to the variance risk of the market portfolio cannot explain the high 
average return of TP. Following Price, Price and Nantell (1982) and Harlow and Rao 
(1989), we measure the downside risk of the market portfolio by the second lower 
partial moment (LPM): 

∫
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2     (3.10) 

 
This statistic measures the average squared deviation below the target rate of return 
m. We may measure the contribution of the tangency portfolio to the downside risk of 
the market portfolio by the lower partial moment market beta (LPM beta): 
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Since the true return distribution G is not known, we use the following sample 
equivalent: 
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Figure 3.4 shows the tangency portfolio’s LPM beta for threshold levels (m) ranging 
from 0 to -/-25 percent for the five benchmark portfolio sets. Clearly, for all data sets, 
the systematic downside risk of the tangency portfolio increases as the target return 
is lowered. In other words, the portfolio that seems superior to the market in mean-
variance terms becomes riskier during market downturns. The pattern of increasing 

Figure 3.4: Downside betas.  This figure shows the lower partial moment beta of the tangency portfolio 
(the portfolio with the maximal MV pricing error) for different threshold levels (m) and for each of the 
five data sets. The downside risk of TP increases as the threshold return is lowered. Hence, the 
systematic risk of the seemingly attractive portfolios (small/value/winner) increases during market 
crashes. 
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betas during heavy stock market losses is most noticeable for the triple sorted C27 
dataset. 
 The pattern of the LPM betas in Figure 3.4 is similar to the pattern of the 
optimal utility functions in Figure 3.3. The optimal utility functions tend to kink at 
return levels where the LPM beta of the optimal portfolio is high. For example, in the 
value data set, the largest increase in downside risk occurs for target returns below -
/-20 percent.  
 The increase in LPM beta as we lower the target return is in the range of 0.08 
to 0.32. At first sight, these increases may seem relatively small. However, combined 
with a beta premium of about 0.387 to 0.714 percent per month (or 4.6% to 8.6% per 
annum, see Table 3.1), these increases yield a substantial decrease in the pricing 
error of the tangency portfolio. 

3.4.3 Rolling window analysis 
How robust are the findings for the sample period under consideration? It is possible 
that equity return distributions are conditionally normal, but unconditionally non-
normal. After all, the risk profile of stocks and the risk preferences of investors 
change through time.21 Tests for market portfolio efficiency could be affected by this 
time variation in risk and risk premia.  
 Therefore the market portfolio may be MV inefficient in the total sample, but 
MV efficient in the subsamples. Perhaps the TSD efficiency classification picks up 
this conditional pattern in the risk return relation. In addition, the degree of 
efficiency may change over time. For example, Gibbons, Ross and Shanken (1989) 
find no full sample size effect, but reject MV efficiency during the early 1960s, late 
1970s and early 1980s. To control for structural variation in risk and risk premia, we 
employ a rolling window analysis.  
 With 12-month steps, we consider all 120-month samples from January 1933 
to December 2002 (721 samples in total). For every subsample, we compute the p-
values of the MV and TSD tests. The TMV results coincide with the MV results in the 
large majority of the subsamples and are not reported separately. 

                                                 
21 Fama and French (2002) argue that structural economic changes have lowered the expected equity 
premium during the last four decades. Further, the risk of stocks has changed along: for example the 
betas of value stocks show a structurally declining trend (for example see: Petkova and Zhang (2003)). 
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Figure 3.5: Rolling window analysis of efficiency tests. This figure shows the p-values for the MV and 
TSD efficiency tests in each of the five data sets using a rolling 120-months period (12-month steps). The 
grey line represents the p-value of the MV test and the dark line shows the TSD p-value. The figure 
reads as follows: consider the 1980 observation in the value data set, which represents the 120-month 
period starting in January 1975 to December 1984. For this period, the stock market is MV inefficient 
(p=0.004) but TSD efficient (p=0.263). During the 1970s and early 1980s, MV efficiency can be rejected 
relative to all data sets (p<0.05), while TSD efficiency cannot be rejected (p>0.1).
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 Interestingly, we observe in Figure 3.5 that the market portfolio is MV 
efficient from the early 1930s to the late 1950s. The first empirical tests of the CAPM 
depended heavily on this sample period. For example, the Black, Jensen and Scholes 
(1972) sample period ranged from 1931 to 1967. However, starting in 1960s to the 
early 1990s we find serious violations of MV efficiency for all sorts based on size, 
value and momentum. The influential Fama and French (1993, (1996) studies focus 
on this particularly anomalous sample period.

 
 

However, during the 1970s and the early 1980s, the MV and TSD results 
diverge strongly. Specifically, MV efficiency is consistently rejected, with p-values 
reaching levels far below ten percent. The MV-results are very similar across the 
various benchmarks sets with significant inefficiencies concentrated in one particular 
anomalous period, the period during the 1970s and the early 1980s. By contrast, TSD 
efficiency is not rejected relative to size, value, or momentum for mostly all 
subsamples. Only in a few subsamples during the 1960s for value, does the TSD p-
value fall slightly below the ten percent level. In all other subsamples and for all 
benchmark sets we cannot reject TSD efficiency. As is true for the full sample, the 
implicit TSD utility functions during the 1970s and the early 1980s assign a high 
weight to large losses. Again, this suggests that downside risk can explain the high 
average returns of small/value/winner stock portfolios.

 
 

Figure 3.6 further illustrates the explanatory power of downside risk. The 
figure shows a rolling window analysis of the tangency portfolio’s standard market 
beta and the LPM market beta. In every subsample, the threshold return (m) is set at 
the 2.5th percentile of the market return distribution. Hence, the LPM market beta 
measures the contribution to the left tail of the market return distribution. During 
most subperiods, the downside risk of the tangency portfolio is smaller than or equal 
to the standard market beta. Interestingly, during these periods, the market portfolio 
generally is efficient in terms of both the MV criterion and the TSD criterion. By 
contrast, during the 1970s and early 1980s, when the MV and TSD efficiency 
classifications diverge, TP’s downside risk also sharply increases; the tangency 
portfolio involves substantially more downside risk than measured by the standard 
market beta. This pattern of downside risk is again found for all data sets. The 
optimal portfolio is riskier than it seems in the mean-variance framework, because its 
contribution to the left tail of the market return distribution is much larger than its 
contribution to market variance. The TSD criterion picks up this pattern of downside 
risk and uses it to rationalize the MV inefficiency of the market portfolio. 
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Figure 3.6: Rolling window analysis of downside betas. This figure shows the lower partial 
moment (LPM) beta ( )ΧFmi τ,β  of the tangency portfolio (the portfolio with the maximal MV 
pricing error) compared to the traditional MV beta, using a rolling 120-months period (12-
month steps). In every subsample, the threshold return (m) is set at the 2.5th percentile of 
the market return distribution. The rolling LPM betas of the tangency portfolio coincide or 
are lower than the standard MV betas during most subsamples. Interestingly, during these 
periods, the market portfolio is MV-efficient. However, during the anomalous 1970s and 
early 1980s downside risk of the tangency portfolio is higher than co-variance risk. 
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3.5 Conclusions 
The value-weighted stock market portfolio is TSD efficient, but MV inefficient 
relative to benchmark portfolios formed on size, value and momentum. The TSD 
criterion is especially successful in rationalizing the persistent MV inefficiencies that 
occur in the 1970s and the early 1980s. During this period, the mean-variance 
tangency portfolio has relatively high downside risk, and no other portfolio yields a 
significantly better trade-off between mean and downside risk than the market 
portfolio.

  
 

We may ask if TSD efficiency of the market portfolio simply reflects a lack of 
power due to the use of minimal assumptions. Personally, we see the use of minimal 
assumptions as the strength rather than the weakness of our approach; TSD reduces 
the specification error that follows from ad hoc parameterization, while increasing 
power by imposing economically meaningful regularity conditions (nonsatiation, risk 
aversion and skewness preference). Also our main results rely on a relatively long 
time-series (as high as 840) and a narrow cross-section (as low as 10). Our simulation 
study shows that the TSD test is sufficiently powerful in this case.  
 Presumably, the difference with the results of Post (2003), who rejects market 
portfolio efficiency, can be attributed to Type I error caused by the use in the earlier 
study of the restrictive null of equal means rather than the true null of TSD 
efficiency and the focus on the post-1963 period. By contrast, our analysis uses the 
sampling distribution under the true null and also includes the pre-1963 period.  
 Our analysis assumes that return observations are serially identical and 
independent distributed (IID). However, there exists a wealth of evidence that the 
risk/return characteristics of securities show structural and cyclical variation. 
Notwithstanding the arguments in favour of time-variation, our main finding is that 
an unconditional model can explain the size, value and momentum puzzles. Also, 
conditional models entail a large risk of specification error, as a conditional model 
has to specify how each aspect of investor preferences and the return distribution 
depends on the state-of-the-world. Unfortunately, economic theory gives minimal 
guidance about the evolution of investor preferences and the return distribution. In 
addition, the problem of imposing the regularity conditions is very severe; with a 
conditional model, we have to make sure that the utility function is well-behaved for 
all possible states-of-the-world. In fact, the results of many conditional asset pricing 
studies can be shown to reflect severe violations of the basic conditions; see for 
instance Wang and Zhang (2004). 
 We use a simple single-period, portfolio-oriented, rational model of a 
competitive and frictionless capital market that is very similar to the traditional 
CAPM. Our explanation rests solely on a generalization of the way risk is measured 
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in the CAPM. Of course, alternative explanations may exist for the MV inefficiencies, 
for example based on a multi-period, consumption-oriented model, a model with 
imperfect competition or market frictions, or a model where investor behave 
according to non-expected utility theory. It may be impossible to empirically 
distinguish between some of these explanations and our explanation based on 
downside risk. For example, liquidity effects and downside risk may be 
indistinguishable, because liquidity typically dries up when the largest losses occur 
and, in turn, liquidity dry-up may cause or amplify the losses. Similarly, the 
subjective overweighing of the probability of large losses will result in similar 
predictions as a high marginal utility for large losses. Our point is simply that a 
simple risk-based generalization of the CAPM suffices to explain the high average 
returns of small, value and winner stocks. 
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Appendix 3.1 
 
Proof to Theorem 1: By construction, ),( ΧFτξ  is bounded from above by 
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for all Uu ∈ . Interestingly, we can derive the asymptotic sampling distribution of 

),,( uFΧτζ , ),,( UGu τΨ∈ , under 0H  from known results. Since the observations tx , 

Tt ,,1L= , are serially IID, the vectors ))(( ττ ΤΤ −′ tttu exxx , Tt ,,1L= , are also 

serially IID. In general, these vectors have mean 

)())((),,( xexxx GduuG ∫ ΤΤ −′≡ τττµ  and variance-covariance matrix 

)()),,())(())(,,())((( xexxxexxx GduGuuGu∫ ΤΤΤΤΤ −−′−−′ τµτττµττ . We adhere to 

the statistical convention of using the least favorable distribution that maximizes the 
p-value under the null. Under 0H , 0),,( ≤uGτµ , and ]),,(Pr[ 0HyuF >Χτζ  is 

maximal if 0),,( =uGτµ . (Note that this represents the case where all assets are 

included in the evaluated portfolio, that is, 0>τ ; in this case, the first-order 
condition (3.1) must hold with strict equality.) Hence, for the least favorable 
distribution, the vectors ))(( ττ ΤΤ −′ tttu exxx , Tt ,,1L= , are serially IID draws with 

mean 0  and variance-covariance matrix 

≡),,( uGτΣ )())(()( 2 xexxexxx Gdu∫ ΤΤΤΤ −−′ τττ  = ΤΤΤ −− ))(,()( ττ ee ΙΩΙ uG . 

Therefore, the Lindeberg-Levy central limit theorem implies that the vector 
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−′∑ exxx  obeys an asymptotically normal distribution with mean 0  

and variance-covariance matrix TuG /),,(τΣ . Hence, asymptotically, ),,( uFΧτζ  is 

the largest order statistic of N random variables with a joint normal distribution, and 
we find  
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Combining (A3.1) and (A3.2), we asymptotically find 
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for all ),,( UGu τΨ∈ .  

 
Q.E.D. 
 



 

Chapter 4 

Conditional downside risk1 

 

4.1 Introduction 
A WELL-KNOWN LIMITATION OF THE MEAN-VARIANCE (MV) CAPM is that variance is a 
questionable measure of investment risk. While investors typically assign greater 
importance to downside volatility than to upside volatility (due to decreasing absolute 
risk aversion), this measure treats downside volatility and upside volatility in the 
same manner. This is a powerful argument for replacing variance with measures of 
downside risk, as already advocated by Markowitz (1959). The mean-semivariance 
(MS) CAPM (Hogan and Warren (1974) and Bawa and Lindenberg (1977)) replaces 
variance with semivariance and replaces the regular beta with a downside beta that 
measures the co-movements with the market portfolio in a falling market.  
 The MS CAPM preserves all key characteristics of the MV CAPM, including 
the two-fund separation principle, efficiency of the market portfolio and the linear 
risk-return relationship. The only difference is the use of the relevant risk measures 
– variance and regular beta vs. semivariance and downside beta. The importance of 
this difference depends on the shape of the return distribution. For symmetrical 
return distributions, regular beta and downside beta are identical. However, for 
asymmetrical distributions, such as the lognormal, the two models diverge. 
 Price, Price and Nantell (1982) show that the historical downside betas of U.S 
stocks systematically differ from the regular betas. Specifically, the regular beta 
underestimates the risk for low-beta stocks and overestimates the risk for high-beta 
stocks. This finding may help to explain why low-beta stocks appear systematically 

                                                 
1 This chapter is a slightly revised version of the paper Post and van Vliet (2004c). 

ABSTRACT: The mean-semivariance CAPM better explains the cross-section of US stock 
returns than the traditional mean-variance CAPM. If regular beta is replaced by downside 
beta, the cross-sectional risk-return relationship is restored. Especially during bad-states 
of the world, when the equity premium is high, we find a near-perfect relation between 
risk and return. Further, conditional downside risk (1) explains returns within the size 
deciles, (2) is not related to distress risk, and (3) partly explains the momentum effect. 
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underpriced and high-beta stocks appear systematically overpriced in empirical tests 
of the MV CAPM (see for example Black, Jensen and Scholes (1972), Fama and 
MacBeth (1973) and Reinganum (1981)). 
 The MS CAPM is distinctly different from models that add higher-order 
central moments such as skewness and kurtosis to the mean-variance framework (see 
for example Kraus and Litzenberger (1976), Friend and Westerfield (1980), Harvey 
and Siddique (2000) and Dittmar (2002)). Specifically, the MS CAPM involves fewer 
parameters as it replaces variance with another risk measure and does not introduce 
additional risk measures. Also, the multi-moment models are not sufficiently flexible 
to model downside risk and it is generally difficult to restrict these models to obey the 
standard regularity conditions of nonsatiation (no-arbitrage) and risk aversion (see 
for example Levy (1969)). In fact, multi-moment models seem best suited for 
modeling risk seeking rather than downside risk aversion. 
 Surprisingly, despite the intuitive appeal of semivariance, the empirical 
problems of the MV CAPM and the known differences between regular betas and 
downside betas, the MS CAPM thus far has not been subjected to rigorous empirical 
testing. The few studies devoted to testing the model suffer from problems related to 
the data and the methodology. Jahankhani (1976) focuses on the relatively short 
sample period 1951-1969 that does not include the important bear markets of the 
1930s, 1970s and 2000s. This may critically affect his conclusion that the MS model 
does not fare any better than the MV CAPM.2 By contrast, Harlow and Rao (1989) 
report strong evidence in favor of the general mean-lower partial moment (MLPM) 
CAPM, which replaces the regular beta with a general LPM beta.3 Unfortunately, 
they do not actually estimate the LPM beta due to a flaw in their empirical 
methodology (see Appendix 3.1 at the end of this chapter).4 Thus, we may conclude 
that the MS CAPM thus far has not been subjected to unambiguous testing. 
 The purpose of this chapter is to fill the void by providing an empirical 
comparison of the MV and MS models. The study has three distinctive features. First, 
we pay special attention to obtaining economically meaningful results. Specifically, 
we require the pricing kernel to be economically well behaved in the sense that they 
obey the basic regularity conditions of nonsatiation and risk aversion. One approach 

                                                 
2 Price, Price and Nantell (1982, Footnote 25) also question Jahankani’s use of very short (two-year) 
subsamples. 
3 The downside beta is the special case of the second-order LPM beta with the riskless rate as the target 
rate of return. 
4 The problem is that their asymmetric response model (ARM) generally does not estimate their LPM 
beta; see the Appendix 4.1. 
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to achieve this is by using non-parametric stochastic dominance tests (see Post 
(2003)); these tests start from the regularity conditions rather than a parameterized 
model. Interestingly, using these tests, Post and van Vliet (2004b) show that 
downside risk helps to explain the high returns earned by small caps, value stocks 
and recent winner stocks. This study takes an alternative, parametric approach; we 
fix the model parameters in the spirit of the time-series methodology of Gibbons, Ross 
and Shanken (1989). In this respect, our study differs from the recent downside risk 
paper by Ang, Chen and Xing (2004) Ang, Chen and Xing (2004), where the model 
parameters are fitted (rather than fixed) to optimize the statistical fit using a cross-
sectional regression methodology. 
 Second, we employ data sets that are specially designed for the analysis of 
downside risk. When analyzing risk and risk preferences, it is particularly important 
to include periods during which investment risks are high and investors are sensitive 
to risk. For this reason, we use an extended sample (1926-2002) that includes the 
prolonged bear markets of the 1930s, 1970s and early 2000s. Further, we will use 
benchmark portfolios that are formed on downside beta. After all, if downside beta 
drives asset prices, then sorting on other stock characteristics may lead to a lack of 
variation in means and downside betas and thus erroneous rejections of the MS 
CAPM. 
 Third, we carry out unconditional tests as well as conditional tests that 
account for the economic state-of-the-world. The conditional models are particularly 
relevant given the mounting evidence in favor of time-varying risk and time-varying 
risk aversion (e.g. Jagannathan and Wang (1996) and Lettau and Ludvigson (2001)). 
Guaranteeing a well-behaved kernel is especially important for conditional tests. 
Such tests frequently calibrate the model parameters to optimize the statistical fit of 
the model. Unfortunately, this approach may yield economically questionable results. 
Specifically, the results of unrestricted conditional tests frequently violate the basic 
regularity conditions of nonsatiation and risk aversion. For example, Dittmar 
Dittmar (2002, Section IIID), shows that the apparent explanatory power of skewness 
and kurtosis in addition to variance can be attributed almost entirely to violations of 
risk aversion. Further, Wang and Zhang (2004) show that conditional models 
frequently imply serious arbitrage opportunities.  
 In this chapter, we find strong indications that conditional downside risk 
drives asset prices. The MS CAPM outperforms the traditional MV CAPM, both in 
unconditional and conditional tests. The low (high) beta stocks involve more (less) 
systematic downside risk than expected based on their regular betas. This pattern is 
especially pronounced during bad states-of-the-world, when the market risk premium 
is high. Further, conditional downside risk (1) explains average returns within the 
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size deciles, (2) is not related to distress risk and (3) can partly explain the 
momentum effect. 
 Figure 4.1 illustrates our main findings with the empirical risk-return 
relationship of ten beta decile portfolios. Later on in this chapter we will discuss the 
data formation and the test methodology in greater detail. Panel A shows the typical, 
flat relationship between regular betas and mean returns. Low (high) beta stocks are 
materially under (over) priced relative to the MV CAPM. As shown in Panel B, the 
results improve if the regular beta is replaced by the downside beta of the MS CAPM. 
Panel C shows that during months that are preceded by high dividend yields (above 
median value), the relation between regular betas and mean return also improves. 
Finally, Panel D shows a near perfect fit between means and downside betas during 
bad states-of-the world. The mean spread is consistent with the beta spread and the 
equity premium during bad states.  
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The remainder of this chapter is structured as follows. Section 4.2 first formulates 
the competing capital market models in terms of pricing kernels and explains how we 
will select the unknown kernel parameters and determine the empirical support for 
the competing models. Section 4.3 discusses the data used to test the competing 
models. Next, Section 4.4 presents our results. Subsequently, Section 4.5 provides a 
discussion of the results. Finally, Section 4.6 summarizes our findings and gives some 
suggestions for further research. Appendix 4.1 discusses the flaw in the methodology 
of Harlow and Rao (1989). 
 
 

Figure 4.1: Risk-return relationship of beta portfolios 1931-2002. This figure shows the mean-beta 
relation for the ten beta portfolios (clear dots) and the value-weighted stock market portfolio (filled 
square). The straight line through the origin and the market portfolio represents the equilibrium 
situation. The dotted line shows the line-of-best-fit (OLS). Panel A shows the well-known relationship 
between regular beta and mean returns. Panel B shows the mean-beta relationship when regular beta is 
replaced with downside beta. Panel C shows the relation between regular beta and mean returns in bad 
states-of-the-world (defined as months following a bad state when the dividend yield is above its median 
value). Finally, Panel D shows the relation when regular beta is replaced by downside beta. For a 
detailed description of the data and the portfolio formation procedure, see Section 4.3. 
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4.2 Competing asset pricing models 

4.2.1 Kernels 
MV CAPM and MS CAPM are relatively simple single-period, portfolio-oriented, 
representative-investor models of a perfect capital market. Both models predict that 
the value-weighted market portfolio of risky assets (M) is efficient and that the 
expected return of individual assets is determined solely by their contribution to the 
risk of the market portfolio. In our analysis, it is useful to formulate both capital 
market models in terms of a pricing kernel.  
 The investment universe consists of N risky assets with excess returns 

( )T
1... Nrrr≡r  and a riskless asset with a zero excess return.5 The return on the 

market portfolio is given by τΤ≡ rMr , where ( )T
1... Nττ≡τ  denotes the weights of the 

market portfolio or the relative market capitalization of the risky assets. Capital 
market equilibrium can be characterized using a pricing kernel )( Mrm  that assigns 

weights to the return of the market portfolio. Specifically, in equilibrium, the 
following equality must hold: 
   

 NMrmE 0=])([ r      (4.1) 

 
In words, the average risk-adjusted excess return of all assets must equal zero. For 
different specifications of the pricing kernel, this equality is our null hypothesis 
throughout this chapter. 
 The pricing kernel can be seen as the marginal utility function of the 
representative investor and Equality (4.1) as the first-order condition for the portfolio 
optimization problem of the representative investor. In this chapter, we use this 
preference-based perspective. The shape of the pricing kernel and the restrictions 
placed on its parameters are governed by the properties of a well-behaved utility 
function (most notably, nonsatiation and risk aversion). 
 It is useful to reformulate (4.1) as the following risk-return relationship: 
 

 βµ Mµ=      (4.1’) 

                                                 
5 To distinguish between vectors and scalars, we use a bold font for vectors and a regular font for 
scalars. All vectors are column vectors and we use Error! Objects cannot be created from editing field 
codes. for the transpose of Error! Objects cannot be created from editing field codes.. 
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In equilibrium, the mean returns ][rE≡µ  equal the market risk premium 

τµ Τ=Mµ  times the market betas 
))]([])([(

])[)]([])([(

MMMM

MM

rmErrmE
ErmErmE
µ−

−
≡

rrβ . The betas are 

generalizations of the traditional market betas (see also Cochrane (2001, Section 
8.4)). Specifically, the betas measure the covariance of the assets with the pricing 
kernel, standardized with the covariance of the market portfolio with the pricing 
kernel. For the unconditional mean-variance model, the generalized betas reduce to 
the traditional variance-based betas. 
 Different capital market models impose different assumptions about the 
pricing kernel. Using )0(1 ≤≡− Mrδ , we will analyze the following four models in our 

analysis: 
 

Model Kernel ( )Mrm( ) 

Unconditional mean-variance (UMV) Mrbb 10 +  

Unconditional mean-semivariance (UMS) −+ δMrbb 10  

Conditional mean-variance (CMV) Mrzbbzbb )()( 3210 +++  

Conditional mean-semivariance (CMS) −+++ δMrzbbzbb )()( 3210  

 

In the unconditional mean-variance (UMV) CAPM, the kernel is a linear function of 
market return. The unconditional mean-semivariance model (UMS) deviates from the 
MV model by using a kernel that is a linear function of market return in case of 
losses ( 0<Mr ) only; for gains, the kernel is flat. In the conditional versions of these 

models (CMV and CMS), the two parameters are linear functions of a single 
conditioning variable z. In the empirical analysis, we will condition on the dividend 
yield (a popular proxy for the state-of-the world) and show that similar results are 
obtained for other conditioning variables, such as the credit spread and the earnings 
yield. 
 In practice, we cannot directly check the equilibrium condition (4.1), because 
the return distribution of the assets is unknown. However, we can estimate the 
return distribution using time-series return observations and employ statistical tests 
to determine if the equilibrium condition is violated to a significant degree. 
Throughout the text, we will represent the observations by the matrix )( 1 Trr L≡R , 

with Τ≡ )( 1 Nttt rr Lr . The values of the kernel will be denoted by the vector 
Τ≡ ))()(( 1 MTM rmrm Lm . Finally, we will use τΤ≡ RMr , for the market return 

observations. 
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 The empirical deviations from the equilibrium equation (4.1), also known as 
pricing errors or alphas, are defined as 
 

 mR1ˆ −≡Tα       (4.2) 
 
The alphas can equivalently be formulated as 
 

 βµα ˆˆˆˆ Mµ−=  (4.2’) 

 

with eR1ˆ −≡ Tµ , τµ Τ= ˆˆ Μµ  and 1))(ˆ))((ˆ(ˆ −ΤΤΤ −−≡ memrmem MM µµβ R  for the 

sample means and sample betas respectively. 
 In practice, the empirical researcher faces two issues: selecting the kernel 
parameters and statistical inference about the equilibrium condition based on the 
alphas.  

4.2.2 Selecting the model parameters 
Some empirical asset pricing studies select the parameters of the pricing kernel so as 
to minimize the alphas. Unfortunately, this approach can yield economically 
questionable parameter values. Most notably, the parameter values may imply 
arbitrage possibilities (a kernel that takes negative values) and/or risk seeking (a 
kernel that increases with market return). 
 Arbitrage opportunities are inconsistent with the basic economic concept of 
increasing utility of wealth, or nonsatiation. Risk seeking entails two economic 
problems. First, risk seeking is inconsistent with the basic economic concept of 
diminishing marginal utility of wealth. Second, the interpretation of the test results 
in terms of utility maximizing investors breaks down if we allow for risk seeking. 
Recall that the equilibrium condition (4.1) can be seen as the first-order condition for 
portfolio optimization. The first-order condition in general is not a necessary 
condition for a global maximum, because minima and local maxima may arise in case 
of risk seeking. For these reasons, a good statistical fit may come at the cost of poor 
economic realism. Section 4.4.1 will give some striking examples of this problem; 
when selected to minimize the alphas, the CMV and CMS kernels take negative 
values and are increasing for favorable states-of-the-world. 
 The UMV efficiency test of Gibbons, Ross and Shanken (GRS, 1989) 
circumvents this problem by fixing the kernel independently of the alphas. 
Specifically, this test requires a zero alpha for the market portfolio: 
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 01 =Τ− mrMT       (4.3) 

 
Also, the test standardizes the kernel by setting its sample average equal to unity: 
 

 11 =Τ− meT       (4.4) 
 

Combined, the restrictions (4.3) and (4.4) completely fix the two parameters of the 
UMV kernel ( 0b  and 1b ). The resulting kernel typically is well-behaved, that is, it 

obeys nonsatiation and risk aversion provided the historical market risk premium 
takes a moderate and positive value.6 We will use these two restrictions for all models 
evaluated in this chapter. This means that our UMV alphas are identical to the GRS 
alphas. As for the UMV kernel, imposing (4.3) and (4.4) completely fixes the UMS 
kernel. Provided the historical market risk premium is positive, the resulting kernel 
will be well behaved.7 For the CMV and CMS models, with four unknown 
parameters, the two restrictions are not sufficient to guarantee well-behavedness for 
every value of the conditioning variable z, and further restrictions are required. For 
this purpose, we introduce an “utopia state”, characterized by an extremely favorable 
value for the conditioning variable, say *z . For example, our analysis below will 
condition on the dividend yield (D/P) and will use a zero dividend yield for the utopia 
state. We assume that the representative investor is satiated (the kernel equals zero) 
and risk neutral (the kernel is flat) in the utopia state. This boils down to imposing 
the following two restrictions: 
 

                                                 

6 If we solve (3) and (4) for 0b  and 1b  of the UMV kernel, we find Error! Objects cannot be created from 
editing field codes. and Error! Objects cannot be created from editing field codes., with Error! Objects 
cannot be created from editing field codes.. The kernel Error! Objects cannot be created from editing 
field codes.Error! Objects cannot be created from editing field codes. is decreasing (risk aversion) 
provided the historical market risk premium Error! Objects cannot be created from editing field codes. is 
positive. Further, the kernel is non-negative (nonsatiation) provided Error! Objects cannot be created 
from editing field codes.. This condition generally holds in samples where the historical market risk 
premium takes a moderate and positive value and the market return distribution is not extremely 
positively skewed. 

7 If we solve (4.3) and (4.4) for 0b  and 1b  of the UMS kernel, we find Error! Objects cannot be created 
from editing field codes. and Error! Objects cannot be created from editing field codes., with Error! 
Objects cannot be created from editing field codes. and Error! Objects cannot be created from editing 
field codes.. The kernel Error! Objects cannot be created from editing field codes. Error! Objects cannot 
be created from editing field codes. is decreasing (risk aversion) provided the historical market risk 
premium Error! Objects cannot be created from editing field codes. is positive. Further, the kernel is 
always non-negative (nonsatiation), because Error! Objects cannot be created from editing field codes..  
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32 =+ zbb      (4.6) 

 
The four parameters of the conditional models are completely fixed by the four 
equalities (4.3)-(4.6). By imposing satiation and risk neutrality for the utopia state, 
we effectively avoid the possibility of a negative and/or increasing kernel for less 
favorable states-of-the-world. Later on, in the discussion section, we will analyze how 
the fixing of the model parameters influences the test results. 
 We stress that our approach of fixing the kernel necessarily leads to a worse 
statistical fit than optimizing the kernel. However, our approach ensures that the 
kernel is economically well behaved, in the sense that arbitrage possibilities and risk 
seeking are excluded. Related to this, our approach involves a higher statistical 
power (probability of detecting inefficiencies) than optimizing the kernel. An 
additional advantage of our approach is that a single kernel can be used for different 
benchmark sets. Thus, we do not explain different benchmark sets with different 
kernels. 

4.2.3 Statistical inference 
We now turn to the issue of statistical inference about the equilibrium condition (4.1) 
based on the estimated alphas. Under the null, the alphas have means NE 0=]ˆ[α . 

The covariance matrix Ω ]ˆˆ[ Τ≡ ααE  of the alphas can be estimated in a consistent 

manner by  
 

  ))((ˆ 1 ΤΤ− ⊗⊗≡ RR mmTΩ      (4.7) 

 
In the spirit of the Generalized Method of Moments, we can use the following test 
statistic to aggregate the individual alphas: 
 

  αα ˆˆˆ 1−Τ≡ ΩTJT      (4.8) 
 
Assuming that the observations are serially independently and identically 
distributed (IID) random draws, the test statistic obeys an asymptotic chi-squared 
distribution with N-1 degrees of freedom. The “loss” of one degree of freedom occurs 
due to the restriction that the alpha of the market portfolio should equal zero (3). 
Thus, in case of a single risky asset (N=1), the market portfolio is fully efficient and 
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0=JT  by construction. More generally, for N assets, the test statistic behaves as the 
sum of squares of N-1 contemporaneously IID random variables. 

4.3 Data 

4.3.1 Data sources 
In the empirical analysis we use individual stock returns, index returns, hedge 
portfolio returns and conditional variables. The monthly stock returns (including 
dividends and capital gains) are from the Center for Research in Security Prices 
(CRSP) at the University of Chicago. The CRSP total return index is a value-
weighted average of all U.S stocks included in this study. The one-month U.S 
Treasury bill is obtained from Ibbotson. We subtract the risk-free rate from nominal 
returns to obtain excess returns. The dividend and earnings yield are obtained from 
Robert Schiller’s homepage. The credit spread is the difference between the Aaa and 
Baa corporate bond yields and are from the St. Louis Fed.8 The monthly hedge 
portfolio returns (SMB and HML) are taken from the data library of Kenneth French. 

4.3.2 Stock selection 
We select ordinary common U.S stocks listed on the New York Stock Exchange 
(NYSE), American Stock Exchange (AMEX) and NASDAQ markets. We exclude 
ADRs, REITs, closed-end-funds, units of beneficial interest, and foreign stocks. 
Hence, we only include stocks that have a CRSP share type code of 10 or 11. We 
require a stock to have (1) 60 months of data available (for beta estimation) and (2) 
information about market capitalization (defined as price times the number of 
outstanding shares) at formation date. Portfolio formation takes place at December of 
each year (except for momentum). For example, to be included at December 1930 a 
stock must have trading information since January 1926 and a positive market 
capitalization for December 1930. A stock is excluded from the analysis if there is no 
more price information available. In that case, the delisting return or partial monthly 
return provided by CRSP is used as the last return observation. 

                                                 
8 Kenneth French: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
Robert Schiller: http://www.econ.yale.edu/~shiller/data.htm 
St. Louis Fed: http://research.stlouisfed.org/fred2. 
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4.3.3 Sample period 
When analyzing risk, it is particularly important to include periods during which 
investment risks are high and investors are sensitive to risk. In this respect, the 
failure of the MS model to improve upon the MV model in the analysis of Jahankhani 
(1976) is presumably caused by the focus on a sample period (1951-1969) that 
excludes the important bear markets of the 1930s, 1970s and 2000s. Nowadays, 
empirical researchers often confine themselves to the post-1963 period to avoid biases 
associated with the Compustat database. Nevertheless, since the revision of 1999, the 
CRSP database is free of delisting bias and survivorship bias for the total 1926-2002 
period. Therefore, when only CRSP data are used (without Compustat requirements) 
there is no reason to exclude the pre-1963 period. In fact, the early period seems 
particularly useful because it includes the bear market of the 1930s. This study will 
use the entire sample period of the 2002 CRSP database: January 1926 – December 
2002. Furthermore, we analyze the role of downside risk in different subsamples. 

4.3.4 Benchmark portfolios 
Rather than analyzing all individual stocks, empirical studies generally evaluate a 
small set of benchmark portfolios formed from the individual stocks. This reduces the 
computational burden of having to analyze thousands of individual stocks and also 
allows the researcher to control for particular stock characteristics and for changes of 
those characteristics (by periodically rebalancing the portfolios). The main part of our 
analysis focuses on benchmark portfolios that are based on regular market beta and 
downside market beta. If the MV CAPM applies and regular beta drives asset prices, 
then sorting on other stock characteristics may lead to a lack of variation in means 
and erroneous rejections of the MV CAPM. Similarly, if the MS CAPM applies, then 
sorting stocks on downside beta maximizes the mean spread and minimizes the 
probability of erroneous rejections of the MS CAPM.  
 At the end of December of each year, all stocks that fulfill our data 
requirements are sorted based on beta and grouped into ten decile portfolios.9 The 
sorting starts in December 1930, 60 months after the beginning of the CRSP files, 
because 60 months of prior data are needed for estimating the betas of the individual 
stocks when sorting on beta. Next, for each portfolio value-weighted returns are 

                                                 
9 The results are not affected by the sorting frequency. When sorting takes place on a monthly basis 
(instead of in December of each year) we find similar portfolio characteristics and test results. 
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calculated for the following next 12 months.10 When a stock is delisted or removed 
from the database after formation date, the portfolio return is calculated as the 
average for the remaining stocks in the portfolio during the holding period.  
 To disentangle the effect of regular beta and downside beta, we also use 
double-sorted portfolio. Stocks are sorted first into regular (downside) beta quintiles 
and next every quintile is further divided into downside (regular) beta quintiles, 
giving 25 portfolios in total. Later on, in the discussion section, we will also control 
for size. We then first place stocks in NYSE size deciles and subsequently sort on 
regular beta and downside beta, yielding 100 portfolios. Also, we will use momentum 
portfolios to investigate if (conditional) downside risk can help to explain the returns 
of momentum strategies. In sum, we employ (1) regular-beta portfolios (2) downside-
beta portfolios, (3) double sorted beta portfolios, (4) double sorted size/beta portfolios 
and (5) momentum portfolios. All data are publicly available.11 

4.4 Results 

4.4.1 Pricing kernels  
Figure 4.2 shows the conditional and unconditional pricing kernels for the mean-
variance and mean-semivariance models. Recall that the pricing kernels assign a 
weight to each scenario and are standardized such that they take an average value of 
unity. The shape of the unconditional kernels is determined by the historical market 
risk premium. Since the UMS model explains the market risk premium only with the 
distribution of losses, the degree of risk aversion (for losses) in this model exceeds the 
degree of risk aversion in the UMV model. Specifically, the slope of the UMV kernel 
is -/-0.022, while the slope of the UMS kernel in the loss segment is -/-0.049.  

The shape of the conditional kernels is determined by the unconditional 
historical market risk premium and the requirement of satiation and risk neutrality 
in the utopia state. Since the kernels are flat in the utopia state, the slope during the 
worst states is much higher than the slope of the unconditional models. Specifically, 
for a dividend yield of 10 percent, the slope of the CMV kernel is -/-0.052 and the 
slope of the CMS kernel in the loss segment is -/-0.130. The conditional kernels 
increase with the dividend yield, reflecting that marginal utility during bad states is 

                                                 
10 We prefer value-weighted returns to equal-weighted returns because equal-weighted returns require 
continuous portfolio updating, which in practice involves high transaction costs. By contrast, value-
weighted returns closely resemble a buy-and-hold strategy with relatively low transaction costs. 
11 All data can be downloaded at our datacenter: www.few.eur.nl/few/people/wvanvliet/datacenter. 
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higher than during good states; investors fear negative stock returns during bad 
states-of-the-world most. 

A loss experienced during good states may be assigned a lower weight than a 
gain experienced during bad states. For example, in October 1974, the excess return 
on the market portfolio was 16.1 percent. The stock market strongly recovered from a 
prolonged bear market during which the dividend yield had increased to 5.27. The 
CMV kernel takes a value of 0.87 for this month. By contrast, the October 1987 crash, 
with an excess return of -/-23.1 on the market, followed a prolonged bull market 
during which the dividend yield had fallen to 2.72. In this month, the CMV kernel 
takes the value 0.99, only marginally higher than the value of 0.87 for the October 
1974 gain of 16.1 percent. In an unconditional model, such small differences in the 
weights are possible only in case of near risk neutrality. However, conditional models 
recognize that marginal utility is higher during bad states than during good states.  
 The fixed kernels are well-behaved, that is, they obey nonsatiation and risk 
aversion over the sample range of the market return and the dividend yield. 
Imposing these regularity conditions is the key motivation for fixing the kernels. By 
contrast, selecting the kernel to optimize the statistical fit can result in very ill-
behaved kernels; see Section 4.4.1.  
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4.4.2 Regular-beta-sorted portfolios 
Panel A of Table 4.1 shows the descriptive statistics and test results for the regular-
beta portfolios. Low (high) beta portfolios have low (high) returns, low (high) 
variance, negative (positive) skewness and low (high) kurtosis. From the values for 
skewness and kurtosis we can see that the return distribution is not normal and 

Figure 4.2: Fixed pricing kernels. The figure shows the unconditional and conditional pricing kernels for 
the MV CAPM and MS CAPM in the full sample (January 1931 - December 2002). The unconditional 
kernels are found by solving the Equalities (4.3) and (4.4) for the unknown parameters. The conditional 
kernels are obtained by using the one-month lagged dividend yield as the conditional variable and 
solving the Equalities (4.3)-(4.6) for the unknown parameters. The resulting kernels are given by 

( ) ,022.0015.1 MM rrm −= (UMV) ( ) −−= δMM rrm 049.0921.0  (UMS), ( ) MM zrzrm 003.0145.0 −=  (CMV), and 
( ) −−= δMM zrzrm 013.0219.0  (CMS). 
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hence that the MV CAPM and MS CAPM can be expected to give different results. 
Consistent with other studies employing beta-sorted portfolios, low-beta stocks are 
underpriced and high-beta stocks are overpriced in the UMV CAPM. The lowest-beta 
portfolio and the highest-beta portfolio have regular betas of 0.63 and 1.74 
respectively, a beta spread of 1.11. Given the market risk premium of 0.64 percent, 
this beta spread is too large compared to the mean spread of 0.29 (0.89-/-0.60). 
 Consistent with Price, Price and Nantell (1982), the downside betas are higher 
than the regular betas for the low-beta portfolios, while the downside betas are 
smaller than the regular betas for the high-beta portfolios. For example, the 
downside beta of the lowest-beta portfolio is 0.66, while the highest-beta portfolio has 
a downside beta of 1.68. The beta spread thus decreases from 1.11 to 1.02. As a 
result, the UMS alphas are smaller than the UMS alphas and the overall p-value 
rises from 0.14 to 0.25. 
 Apart from downside risk, time-variation also helps to explain the returns of 
the beta portfolios. Specifically, the betas of the low (high)-beta stocks increase 
(decrease) during bad times, when the market risk premium is high. For example, the 
conditional market beta of the lowest-beta portfolio is 0.72, an increase of 0.09 
relative to the UMV model, while the conditional market beta of the highest-beta 
portfolio is 1.55, a decrease of 0.19, and the beta spread falls from 1.11 to 0.83. 
Overall, the conditional model gives a substantially better fit than the unconditional 
model; the p-value increases from 0.14 to 0.83. 
 The best fit is obtained with the CMS model, which combines the explanations 
of downside risk and time-variation. Low beta (high beta) stocks are substantially 
riskier (less risky) than the unconditional regular beta suggests. For example, the 
conditional downside beta of the lowest-beta portfolio is 0.78, an increase of 0.15 
relative to the UMV model, and the conditional downside beta of the highest-beta 
portfolio is 1.41, a decrease of 0.33, reducing the beta spread to 0.63. Compared with 
the UMV model, the alphas show substantial reductions. The largest positive pricing 
error drops from 0.18 to 0.08 and the largest negative pricing error goes from -/-0.27 
to -/-0.06. Overall, the CMS model gives a near-perfect fit, with a p-value of 0.98. 
 In brief, while the UMV model performs poorly for beta-sorted portfolios, 
accounting for downside risk and for time-variation substantially improves the fit. In 
fact, the combined effect is strikingly good. 
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Panel A: Regular-beta portfolios 

  Low 2 3 4 5 6 7 8 9 High  JT p 

Mean 0.60 0.62 0.67 0.63 0.85 0.72 0.77 0.77 0.85 0.89    
Stdev 4.26 4.64 5.23 5.49 6.34 6.77 7.19 8.22 9.15 10.39    
Skewness -0.15 0.40 0.55 0.56 0.81 0.77 0.77 1.45 1.48 1.19  

St
at

s.
 

Kurtosis 6.1 8.0 9.4 8.9 10.2 10.4 10.5 14.4 14.7 11.0    

UMV 0.18 0.11 0.07 0.00 0.12 -0.07 -0.07 -0.18 -0.19 -0.27  13.5 0.14 
UMS 0.16 0.11 0.08 0.01 0.14 -0.05 -0.06 -0.13 -0.13 -0.23 11.3 0.25 
CMV 0.12 0.05 0.08 0.03 0.06 -0.04 -0.06 -0.13 -0.11 -0.15  5.0 0.83 A

lp
ha

s 

CMS 0.08 0.05 0.08 0.04 0.07 -0.01 -0.04 -0.03 0.02 -0.06  2.4 0.98 

UMV 0.63 0.77 0.89 0.95 1.10 1.18 1.26 1.42 1.56 1.74    
UMS 0.66 0.77 0.88 0.93 1.07 1.15 1.23 1.35 1.48 1.68  
CMV 0.72 0.85 0.88 0.91 1.19 1.14 1.24 1.35 1.44 1.55    B

et
as

 

CMS 0.78 0.85 0.88 0.89 1.17 1.09 1.21 1.19 1.25 1.41  

Panel B: Downside-beta portfolios 

  Low 2 3 4 5 6 7 8 9 High  JT p 

Mean 0.56 0.66 0.67 0.75 0.83 0.70 0.79 0.83 0.84 1.01    
Stdev 4.30 4.70 5.20 5.81 6.55 7.23 7.26 8.26 9.80 10.86  
Skewness -0.35 0.29 0.05 0.93 0.80 1.55 0.89 1.53 1.96 1.42    St

at
s.

 

Kurtosis 5.1 6.8 6.4 12.0 10.2 16.8 10.3 15.4 19.5 12.0  

UMV 0.11 0.13 0.07 0.06 0.06 -0.14 -0.05 -0.12 -0.27 -0.17 12.3 0.12 
UMS 0.08 0.12 0.06 0.09 0.08 -0.09 -0.02 -0.07 -0.18 -0.12  8.2 0.52 
CMV 0.11 0.07 0.08 0.05 0.07 -0.12 0.00 -0.07 -0.23 -0.04  10.7 0.30 A

lp
ha

s 

CMS 0.05 0.06 0.05 0.08 0.10 -0.05 0.05 0.04 -0.04 0.06 3.6 0.93 

UMV 0.67 0.80 0.90 1.02 1.15 1.26 1.26 1.43 1.66 1.76    
UMS 0.72 0.81 0.92 0.99 1.12 1.19 1.22 1.35 1.54 1.69    
CMV 0.67 0.88 0.88 1.04 1.14 1.24 1.18 1.35 1.61 1.57  B

et
as

 

CMS 0.77 0.90 0.92 1.00 1.09 1.12 1.11 1.18 1.33 1.42    

 
Panel A of Figure 4.3 further illustrates the role of conditional downside risk. The 
figure shows the regular beta and the downside beta for the lowest-regular-beta 
portfolio and the highest-regular-beta portfolio as a function of the dividend yield (our 
proxy for the state-of-the-world). In the figure, we see a narrowing of the beta spread 
during the bad states (high dividend yield), which helps to explain the success of the 
conditional models. This narrowing is most pronounced for the downside betas. 

Table 4.1
Descriptives, alphas and betas for beta portfolios 

This table shows descriptive statistics for the monthly excess returns of the ten regular-beta portfolios 
(N=10) and the ten downside-beta portfolios. The sample period is from January 1926 to December 2002 
of which the first five years are used for beta estimation. Portfolio returns cover the January 1931 to 
December 2002 period (T=864 months). In December of each year stocks are sorted in ten decile 
portfolios based on historical betas. The portfolios are constructed such that each portfolio contains an 
equal number of stocks. In Panel A and B, the results for the regular-beta and downside-beta portfolios 
are showed respectively. The alphas and betas for each of the following four models are shown: (1) 
unconditional mean-variance CAPM, (2) conditional mean-variance CAPM, (3) unconditional mean-
semivariance CAPM, and finally the (4) conditional mean-semivariance CAPM. The last two columns 
show the test results for the joint hypothesis that the alphas equal zero. The optimally weighted alphas 
(JT) are chi-squared distributed with 9 (N-1) degrees of freedom. 
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Specifically, while the regular beta and the downside beta of the low-beta portfolio 
show a similar increase in bad states, the downside beta of the high-beta portfolio 
falls significantly below the regular beta (which does not exhibit a clear trend) in bad 
states. This reflects the improvement of the CMS model compared to the CMV model. 

 

4.4.3 Downside-beta-sorted portfolios 
Panel B of Table 4.1 shows the results for the downside-beta portfolios. As in Ang, 
Chen and Xing (2004), the variation in mean returns of the downside-beta portfolios 
increases relative to the regular-beta portfolios. Specifically, the mean spread 
increases from 0.29 to 0.45 percent per month, while the downside beta spread 
slightly decreases (1.02 to 0.97). This already gives a first indication that downside 
beta is more relevant than regular beta. The results of the chi-squared test confirm 
this impression. 
 As for the regular-beta portfolios, time-variation and downside risk lead to 
substantial reductions of the alphas. However, time-variation becomes less 
important, while downside risk becomes more important. Panel B of Figure 4.3 
illustrates this finding. Due to the betas of low-downside-beta stocks being higher 
than those for the low-regular-beta stocks in good states (low dividend yield), there no 
longer is a clear narrowing of the beta spread; the regular-beta spread increases 
slightly, while the downside-beta spread decreases slightly. This illustrates the 
limited role of conditioning information for the downside-beta portfolios. By contrast, 
the difference between regular beta and downside beta becomes more important. 

Figure 4.3: Conditional MV and MS betas. This figure shows the regular beta (dark line) and the 
downside beta (pale line) of the lowest-beta portfolio and the highest-beta portfolio. We use a rolling 
120-months window (1-month steps) after sorting the data based on the one-month-lagged dividend 
yield. Panel A shows the results for the regular-beta portfolios and Panel B shows the results for the 
downside-beta portfolios. 
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4.4.4 Double-sorted portfolios 
The above results for regular-beta portfolios and downside-beta portfolios provide 
evidence that downside beta, rather than regular beta, drives expected returns. Still, 
regular beta and downside beta are highly correlated. To disentangle the effect of the 
two risk measures, we apply a double-sorting routine. We sort stocks first into 
quintile portfolios based on regular-beta and then subdivide each regular-beta 
quintile into five portfolios based on downside beta. In addition, we sort first on 
downside beta and then on regular beta. The two resulting datasets of 25 portfolios 
isolate the separate effects of downside beta and regular beta.  
 The results in Table 4.2 further strongly support the conclusion that downside 
beta is more relevant than regular beta. In Panel A we see that average return is 
positively related with downside beta within each regular-beta quintile. Overall, the 
average return of low downside-beta portfolios is 0.71 percent compared to 0.89 for 
the high downside-beta portfolios. Thus controlled for regular-beta, the positive 
relation between mean and downside beta remains intact. By contrast, Panel B 
shows that the positive relation between average return and regular beta disappears 
(becomes flat/negative) within the downside-beta quintiles. Controlled for downside 
beta, the average return of low regular-beta portfolios is 0.83 percent compared to 
0.71 for the high regular-beta portfolios. Apparently, the positive relation between 
regular beta and mean returns in Table 4.1 and Panel A of Table 4.2 is due to the fact 
that regular beta and downside beta are so highly correlated. Separating the effects 
of the two betas shows that downside beta drives average returns. 
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Panel A: Regular beta / Downside beta 

  Downside beta  
  Low 2 3 4 High  Avg. 

Low 0.57 0.64 0.57 0.78 0.74  0.64 
2 0.54 0.72 0.75 0.77 0.78  0.67 
3 0.70 0.76 0.85 0.96 0.96  0.80 
4 0.85 0.76 0.73 0.87 0.97  0.81 R

eg
. b

et
a 

High 0.77 0.89 0.77 1.04 1.04  0.84 

 Avg. 0.71 0.76 0.75 0.88 0.89  0.76 

Panel B: Downside beta / Regular beta 

  Regular beta  
  Low 2 3 4 High  Avg. 

Low 0.56 0.66 0.62 0.60 0.65  0.62 
2 0.72 0.74 0.78 0.73 0.65  0.71 
3 0.94 0.81 0.87 0.83 0.71  0.80 
4 0.98 0.93 0.78 0.82 0.83  0.84 D

ow
n.

 b
et

a 

High 1.14 0.74 0.97 0.90 1.00  0.93 

 Avg. 0.83 0.79 0.80 0.76 0.71  0.76 

4.4.5 Further analysis 
Table 4.3 shows how robust our results are for (1) the specific sample period and (2) 
the conditioning variable. The conditional models are not included for the 
subsamples, because splitting the sample greatly reduces the variation in the 
conditioning variables, hence reducing the added value of these models.  
 Panel A shows the split sample results. The sample is divided into subsamples 
of equal length based on historical time period and state-of-the-world (dividend yield). 
Clearly, the role of downside risk is most pronounced in the first subsample (1931-
1966) and the bad-state subsample. Both subsamples include the bear market of the 
1930s. This illustrates the importance of including this specific period when 
analyzing downside risk. In the more recent subsample (1967-2002) the UMS and 

Table 4.2
Double-sorted beta portfolios  

This table shows the average monthly excess returns of 25 regular-beta/downside-beta portfolios and 25 
downside-beta/regular-beta portfolios. The sample period (T=864 months), data requirements, and 
sorting frequency are identical to those for the beta portfolios. The portfolios are constructed such that 
each portfolio contains an equal number of stocks. In Panel A, the stocks are first sorted into five 
regular-beta quintile portfolios and then into five downside-beta quintile portfolios. In Panel B the 
stocks are first sorted into five downside-beta quintile portfolios and then into five regular-beta 
portfolios. The last rows and columns give the (equal weighted) average returns across the portfolios.  
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UMV models show similar performance for both datasets. However, sorting on 
downside beta still yields a better fit than sorting on regular beta.  
 Panel B further investigates how the results are affected by the choice for the 
specific conditioning variable (z). The dividend price ratio is possibly influenced by a 
structural change in dividend policy. Nowadays, firms use share repurchases as a 
way of returning earnings to stockholders, which structurally lowers the dividend 
yield. Therefore, we also employ the earnings yield (EY) and credit spread (CS) as 
conditioning variables. For the conditional models, the utopia state ( *z ) is again 
characterized by a zero value for these variables. In brief, we find that using the 
earnings yield leads to a worse fit and using the credit spread leads to a better fit, 
especially for the CMV model. While the CMV model depends heavily on the choice 
for the specific conditional variable, the CMS model gives a good fit (p>0.68) for all 
conditioning variables. 

 
 

Panel A: Split samples 

Sample 1931-2002  1931-1966  1967-2002  Bad state  Good state 

  JT p  JT p  JT p  JT p  JT p 

UMV 13.5 0.14  7.7 0.56  13.3 0.15  3.2 0.95  18.5 0.03 RB 
UMS 11.3 0.25  4.4 0.88 13.5 0.14 1.5 1.00 19.3 0.02 

UMV 12.3 0.12  12.3 0.20 8.7 0.47 15.3 0.08 9.3 0.41 DB 
UMS 8.2 0.52  7.1 0.63  8.3 0.50  7.2 0.61  9.6 0.38 

       

Panel B: Other conditional variables 

Variable DY  EY  CS     

  JT p  JT p  JT p       

CMV 5.0 0.83  11.6 0.24  4.3 0.89       RB 
CMS 2.4 0.98  6.6 0.68 3.8 0.92  

CMV 10.7 0.30  17.1 0.05 2.3 0.99  DB 
CMS 3.6 0.93  5.2 0.81  1.0 1.00       

 

Table 4.3 
Robustness analysis 

This table shows the split sample results for the regular-beta (RB) and downside-beta (DB) portfolios, as 
well as results for different conditional variables. The total sample is divided into subsamples of equal 
length (T=432 months) based on historical time period and the state-of-the world (dividend yield). In 
Panel A results are shown for the unconditional mean-variance (UMV) and mean-semivariance (UMS) 
models. Panel B shows the results for the conditional mean-variance (CMV) and mean-semivariance 
(CMS) if dividend yield is replaced with the one-month lagged earnings yield (EY) and credit spread 
(CS). The test statistic (JT) and levels of significance (p) are reported. 
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4.5 Discussion 
When discussing our findings with colleagues, we have often encountered various 
questions. Below, we briefly summarize the most common questions (seven in total) 
and attempt to answer these questions.  

4.5.1 Kernel fitting 

In your study, you have fixed the kernel to impose the regularity conditions of 
nonsatiation and risk aversion. Do fitted kernels really exhibit strong violations of 
the regularity conditions? 
 
Yes. To illustrate the need to impose economic structure, Figure 4.4 shows the 
kernels that are obtained if the parameters are selected to optimize the statistical fit 
(JT). The kernels take negative values (violating nonsatiation) and are positively 
sloped (violating risk aversion) for a large fraction of the observations. Such kernels 
are economically irrelevant because they violate the no-arbitrage rule and also the 
Euler equation is no longer a sufficient optimization condition if concavity is violated. 
A statistically good fit for such kernels does not mean that we have found an 
economically meaningful explanation. 
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Figure 4.4: Fitted conditional pricing kernels. The figure shows the fitted CMV and CMS pricing kernels 
for the full sample (January 1931 - December 2002) and with the one-month lagged dividend yield as the 
conditioning variable. The fitted kernels are determined by maximizing the empirical fit (JT) relative to 
the ten regular beta-sorted portfolios, while maintaining conditions (3) and (4). The resulting kernels are 
given by ( ) MM rzzrm )049.0252.0(363.0493.0 −++−=  (CMV), and  ( ) −−++= δMM rzzrm )049.0187.0(120.0454.0  (CMS). 
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4.5.2 Skewness 

The difference between variance and semi-variance seems especially important for 
skewed return distributions. Does the mean-variance-skewness model of Kraus and 
Litzenberger (1976) give the same results as the mean-semivariance model?  
 
No. The three-moment (3M) CAPM of Kraus and Litzenberger replaces the 
traditional linear pricing kernel with a quadratic pricing kernel. Unfortunately, the 
explanatory power of skewness is very limited if we require the kernel to obey risk 
aversion (see for example Dittmar (2002), Section IIID). Specifically, it follows from 
the theoretical analysis of Tsiang (1972) that a linear kernel gives a good 
approximation for any continuously differentiable and decreasing kernel over the 
typical sample range of asset returns, and that a quadratic kernel is unlikely to 
improve the fit. Interestingly, this argument does not apply to semi-variance, because 
this risk measure is associated with a two-piece linear kernel, for which a linear 
function generally cannot give a good approximation. 

Figure 4.5 illustrates this point using our data set of regular-beta portfolios. 
Panel A shows the cubic kernel 2

210)( MMM rbrbbrm ++=  with the parameters selected 

to optimize the fit (JT) under conditions (4.3) and (44.). The resulting kernel clearly is 
ill-behaved, as it severely violates risk aversion. Panel B shows the results that are 
found if we require the kernel to obey nonsatiation and risk aversion over the sample 
range of market return. The resulting kernel comes very close to UMV CAPM kernel. 
Clearly, a cubic kernel is not sufficiently flexible to capture downside risk aversion if 
risk seeking for gains is excluded. Indeed, the restricted 3M CAPM gives a worse fit 
than the UMS CAPM (JT=12.5 vs. JT=11.3), even though the model has one 
additional parameter that is calibrated to optimize the fit. 
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Figure 4.5: Quadratic pricing kernels. The figure shows the unconditional cubic pricing kernels for the 
three-moment (3M) CAPM using the full sample (January 1931 - December 2002). The kernel in Panel A 
is determined by maximizing the empirical fit (JT) relative to the ten beta-sorted portfolios, while 
maintaining conditions (4.3)-(4.4). Panel B shows the results obtained if we add the restrictions of 
nonsatiation and risk aversion for the sample range of the market return. The resulting kernels are 
given by ( ) 2018.0091.0520.0 MMM rrrm +−=  (unrestricted), and ( ) 2003.0024.0006.1 MMM rrrm +−=   (restricted). 
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4.5.3 Other LPMs 

The MS CAPM uses semi-variance, which is the second-order lower partial moment 
(LPM) with the riskless rate for the target rate of return. Since there exist few prior 
arguments for selecting the order or the target rate, it would be interesting to see the 
results for other LPMs. 
 
The general mean-LPM (MLPM) CAPM can be represented by the pricing kernel 

1
3210 )min()()()( −−+++= k

MM crzbbzbbrm  with c for the target rate of return and k 

for the relevant order of the LPM norm. Again we fix the model parameters by the 
four equalaties (3)-(6), but only alter the LPMs. The MS CAPM model is the special 
case with c=0 and k=2. Panel A of Table 4.4, unconditional LPM, shows the JT 
statistic for various combinations of c and k. For the regular-beta portfolios, the best 
fit is obtained for c=-/-10 and k=2, that is, the variance below a return level of -/-10 
percent. This suggests that tail beta rather than downside beta even better captures 
the returns of the regular-beta portfolios. The best fit is obtained for c=-/-15 and k=1 
for the downside beta portfolios, while the second best fit is for the MS model. 
 Panel B of Table 4.4 shows that results for conditional LPM models confirm 
the results for the uncondional LPM. Again, for the regular-beta portfolios, the best 
fit is obtained for the variance below a return level of -/-10 percent. Similarly, for the 
downside beta portfolios semi-variance is once more the optimal LPM. In brief, the 
beta portfolios are best described by a MLPM CAPM with a low target rate, but the 
MS CAPM gives the best fit for the downside-beta portfolios. 
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Panel A: Unconditonal LPM 

 RB DB
Order (k) 1 2 3 4  1 2 3 4 

-15%  9.0 9.2 10.4 12.6  7.8 8.5 10.0 12.0 
-10%  8.8 7.7 9.1 10.3  11.1 8.6 8.9 9.9 
-5%  11.1 9.0 8.5 9.1  8.2 8.5 8.8 9.2 
0%  13.9 11.3 9.5 9.0  8.2 8.2 8.5 8.8 
5%  13.5 12.1 10.6 9.6  14.3 8.7 8.5 8.6 
10%  13.4 12.4 11.3 10.3  26.8 9.9 8.8 8.6 

Th
re

sh
ol

d 
(c

)  

15%  16.7 12.5 11.6 10.8  27.8 11.1 9.3 8.8 

Panel B: Conditonal LPM 
 RB DB
Order (k) 1 2 3 4  1 2 3 4 

-15%  2.2 1.9 2.1 3.0  4.3 4.9 6.1 7.8 
-10%  3.4 1.8 1.9 2.2  5.2 4.5 5.1 6.0 
-5%  2.2 2.0 1.8 1.9  3.5 4.1 4.5 5.1 
0%  4.7 2.4 1.8 1.8  3.9 3.6 4.1 4.6 
5%  5.6 2.9 2.1 1.8  9.4 4.0 3.9 4.3 
10%  9.4 3.2 2.4 2.0  26.3 5.1 4.1 4.1 

Th
re

sh
ol

d 
(c

)  

15%  10.0 3.5 2.6 2.2  28.3 6.2 4.5 4.2 

 

Table 4.4
Sensitivity LPM model 

This table shows the test results for different LPM norms. The general MLPM CAPM is represented by 
the pricing kernel Error! Objects cannot be created from editing field codes.. The threshold (c) varies 
from -15 percent to +15 percent with 5 percent steps and the LPM order (k) varies from 1 (=expected loss 
below the target) to 4 (=kurtosis below the target). Each cell contains the test statistic (JT). The table 
shows the test results for regular beta portfolios (RB) and downside beta portfolios (DB). Panel A and B 
show the results for unconditional LPM and conditional LPM respectively.  
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4.5.4 Relation to size 

The risk of stocks seems related to market capitalization (ME). Fama and French 
(1992) convincingly show that the MV CAPM fails within different size deciles. Does 
the MS CAPM do any better in this respect? 

 
 
Yes. Figure 4.6 shows that the positive risk-return relation is restored within the 
different size deciles if we replace beta with downside beta. In Panel A of the figure, 
the risk-return relation is flat within the smallest and largest size deciles. Although 
Fama and French (1992) employ a shorter sample (1941-1990) that excludes the 

Figure 4.6: Risk-return relationship of size/beta portfolios 1931-2002. This figure shows the mean-beta 
relation of 100 double size/beta portfolios (clear dots). The smallest and largest decile portfolios (filled 
dots) and the value-weighted stock market portfolio (filled square) are shown separately. The individual 
are sorted first on NYSE size decile breakpoints and then on beta. The straight line through the origin 
and the market portfolio represents the equilibrium situation. The dotted lines give the line-of-best-fit 
(OLS) for (1) all portfolios and (2) the portfolios within the largest and smallest size deciles. Panel A 
shows that mean and beta are not related within the different size deciles. Panel B shows the mean-beta 
relationship when regular beta is replaced with downside beta. Finally, Panel C and D show the 
corresponding relationship during bad states-of-the-world (defined here as states with a dividend yield 
above its median value). 
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1930s and 1990s, they find similar results in their sample. Panel B shows how the 
beta spread decreases and the mean spread increases when regular beta is replaced 
by downside beta. This pattern is most pronounced within the smallest size deciles. 
Panel C and D show further improvements in the risk-return relationship during 
bad-states of the world. As can be seen from the figures, a residual size effect 
remains. We emphasize that the MV and MS models assume a perfect capital market 
and ignore transaction costs and market liquidity, which seem especially relevant for 
the small market segment. Still, the CMS model cannot be rejected within the 
smallest size decile (p=0.57) nor within the largest size decile (p=0.96). Thus, 
downside risk seems to drive asset prices, both within the small and the large market 
segment. 

4.5.5 Three-factor model 
The most successful competitor of the MV CAPM is the three-factor model (TFM) of 
Fama and French (1993). How does this model perform relative to the MS CAPM in 
explaining beta portfolio returns? 
 
Not very good. To answer this question, the TFM can be represented by the kernel 

hmlbsmbbrbb M 3210 +++ , where SMB and HML stand for "small (cap) minus big" and 

"high (book/market) minus low". We fix the model parameters following the 
multifactor generalization of the GRS methodology by Fama (1996). Table 4.5 
compares the fit of the TFM with that of the conditional downside risk model. The 
high-beta portfolios have higher TFM betas than CMV betas, thus leading to larger 
pricing errors. In fact, the TFM model exhibits a rather weak performance relative to 
the beta portfolios (p=0.07 and p=0.01). Thus, the TFM does not capture the 
underpricing/overpricing of low/high beta stocks and conditional downside risk seems 
unrelated to "distress risk". Of course, this does not disqualify the TFM. Our analysis 
uses regular-beta portfolios and downside-beta portfolios in order to test if semi-
variance better captures investor preferences than variance. By contrast, the TFM is 
known to be successful for other benchmark portfolios, most notably double sorted 
size-value portfolios. 
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4.5.6 Momentum 

Your study focuses on explaining the beta-effect. However, the ‘anomalie-du-jour’ is 
the momentum effect (see for example Jegadeesh and Titman (2001)). Does the MS 
model fare any better in explaining the returns of momentum strategies than the MV 
model?  
 
Yes. The MS and MV models assume a perfect capital market and we do not expect 
these models to completely explain the returns of investment strategies that involve a 
high turnover and correspondingly high transactions costs, such as momentum 
strategies (see for instance Lesmond, Schill and Zhou (2004)). Still, momentum 
portfolios are an interesting test case for comparing the MV and MS models, because 
the returns to momentum strategies generally are characterized by asymmetry and 
hence the regular betas and downside betas can be expected to differ substantially. 
For this reason, we applied all five tests (UMV, UMS, CMV, CMS, and TFM) to ten 
momentum decile portfolios. Table 4.6 reports the results. The momentum-effect is 
strongly present; the portfolio of past losers has the lowest mean (0.01% per month) 
and the highest UMV beta (1.57), while the portfolio of past winners has the highest 
mean (1.33% per month) and one of the lowest UMV betas (1.00). Interestingly, 
downside risk and conditioning lead to substantial improvements in the fit. Most 

Panel A: Regular-beta portfolios 

 Low 2 3 4 5 6 7 8 9 High  JT p 

CMS 0.08 0.05 0.08 0.04 0.07 -0.01 -0.04 -0.03 0.02 -0.06 2.4 0.98 α̂  
TFM 0.15 0.10 0.04 -0.03 0.06 -0.14 -0.14 -0.29 -0.32 -0.41  16.0 0.07 

CMS 0.78 0.85 0.88 0.89 1.17 1.09 1.21 1.19 1.25 1.41    
β̂  TFM 0.68 0.78 0.94 0.99 1.19 1.29 1.35 1.59 1.76 1.94   

Panel B: Downside-beta portfolios 

 Low 2 3 4 5 6 7 8 9 High  JT p 

CMS 0.05 0.06 0.05 0.08 0.10 -0.05 0.05 0.04 -0.04 0.06 3.6 0.93 α̂  
TFM 0.12 0.15 0.07 0.05 0.04 -0.23 -0.13 -0.24 -0.47 -0.40  23.3 0.00 

CMS 0.77 0.90 0.92 1.00 1.09 1.12 1.11 1.18 1.33 1.42    β̂  
TFM 0.66 0.76 0.89 1.04 1.19 1.40 1.38 1.61 1.96 2.11    

Table 4.5
Three-factor model and conditional downside risk 

This table shows the alphas (α̂ ) and betas ( β̂ ) for the conditional mean-semivariance (CMS) model and 
the Fama and French three-factor model (TFM). The last two columns show the test results for the joint 
hypothesis that the alphas equal zero. The test statistic (JT) is chi-squared distributed with 9 (N-1) 
degrees of freedom. Panel A shows the results for the regular-beta portfolios and Panel B shows the 
results for the downside-beta portfolios. 
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notably, in the CMS model, which combines the two explanations, the beta of the 
loser portfolio falls from 1.57 to 1.15, while the beta of the winner portfolio rises from 
1.00 to 1.20. Apparently, past losers involve less downside risk in bad states than 
suggested by their unconditional regular betas and for past winners the opposite is 
true. While the improvements are not large enough to rationalize the entire 
momentum effect and both models have to be rejected, the sizeable reductions of the 
alphas again confirm our conclusion that the MS CAPM strongly outperforms the MV 
CAPM - especially during bad states. 
 

 
Momentum Portfolios 

  Loser 2 3 4 5 6 7  8  9 Winn  JT p 

Mean 0.01 0.41 0.44 0.62 0.57 0.60 0.72 0.92 0.94 1.33    
Stdev 10.2 8.61 7.25 6.62 6.32 5.98 5.69 5.68 5.96 6.70    
Skewness 1.92 2.03 1.66 1.41 1.34 0.66 0.01 0.40 -0.17 -0.28  

St
at

s.
 

Kurtosis 16.2 21.1 18.4 14.9 16.7 11.1 6.7 6.3 4.4 2.2    

UMV -1.03 -0.51 -0.36 -0.13 -0.15 -0.09 0.05 0.27 0.27 0.66  61.5 0.00 
UMS -0.95 -0.43 -0.30 -0.09 -0.12 -0.09 0.04 0.27 0.23 0.59 49.2 0.00 
CMV -0.94 -0.52 -0.30 -0.15 -0.17 -0.15 0.04 0.31 0.34 0.65  48.8 0.00 
CMS -0.75 -0.36 -0.17 -0.07 -0.10 -0.15 0.01 0.29 0.25 0.53  29.4 0.00 A

lp
ha

s 

FF -1.23 -0.65 -0.44 -0.20 -0.21 -0.13 0.06 0.28 0.29 0.71 73.8 0.00 

UMV 1.57 1.38 1.20 1.12 1.09 1.04 0.99 0.98 1.00 1.00  
UMS 1.44 1.27 1.12 1.06 1.04 1.04 1.02 0.98 1.05 1.11    
CMV 1.43 1.40 1.12 1.15 1.11 1.13 1.01 0.92 0.90 1.01  
CMS 1.15 1.16 0.93 1.04 1.00 1.13 1.06 0.94 1.03 1.20    B

et
as

  

FF 1.86 1.59 1.32 1.22 1.17 1.09 0.99 0.97 0.97 0.93    

 
 

Table 4.6
Momentum and conditional downside risk 

This table shows descriptive statistics for the monthly excess returns of the ten momentum portfolios 
(N=10). The sample period and data requirements are identical to those for the beta portfolios. Each 
month, stocks are sorted based on 12-month price momentum (cumulative past 12-1 month returns). The 
portfolios are constructed such that each portfolio contains an equal number of stocks. The alphas (α̂ ) 
and betas ( β̂ ) for each of the following five models are shown: (1) unconditional mean-variance CAPM, 
(2) conditional mean-variance CAPM, (3) unconditional mean-semivariance CAPM, (4) conditional mean-
semivariance CAPM and finally (5) Fama and French three-factor model. The last two columns show the 
test results for the joint hypothesis that the alphas equal zero. The test statistic (JT) is chi-squared 
distributed with 9 (N-1) degrees of freedom. 
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4.5.7 Other results 

How do your results compare with those of Ang, Chen and Xing (ACX, 2004)? 
 
As in our study, ACX conclude that downside risk is important to explain the cross-
section of stock returns. However, the data and methodology of ACX differ from ours. 
The conclusion of ACX relies on them using (1) equal-weighted portfolio returns and 
(2) the Fama and MacBeth (1973) cross-sectional methodology that selects the model 
parameters that give the best empirical fit. In fact, using value-weighted portfolio 
returns and our methodology, we find relatively weak evidence favoring the UMS 
model over the UMV model in the ACX sample (1963-2001). This confirms our finding 
that the role of downside risk in the second half of the 20th century is limited (see 
Panel A of Table 4.3). Using equal-weighted portfolio returns rather than value-
weighted returns has the effect of placing greater weight on the small cap segment. 
As illustrated in Figure 4.6 above, downside risk is relatively more important for the 
small caps than for the large caps. The cross-sectional methodology further inflates 
the explanatory power of downside risk by allowing a high intercept (far above the 
historical riskless rate) and a low slope (far below the historical equity premium). 
These two factors explain why the evidence of ACX disappears in our approach that 
uses value-weighted returns and fixes the model parameters in the spirit of the GRS 
time-series methodology. In contrast to ACX, our case for the MS CAPM rests of the 
pattern of downside risk in the earlier years and the bad states-of-the-world. This 
pattern occurs also for the large caps and if the intercept and slope are fixed. 



102  Chapter 4 

 
 

4.6 Conclusions 
Surprisingly, despite the theoretical limitations of variance, the differences between 
regular beta and downside beta, and the empirical problems of the mean-variance 
(MV) CAPM, the mean-semivariance (MS) CAPM has not been subjected to rigorous 
empirical testing thus far. In an extended sample (1931-2002) we employ 
unconditional MV and MS tests as well as conditional tests that account for the 
economic state-of-the-world.  

We find that the MS CAPM strongly outperforms the traditional MV CAPM in 
terms of its ability to explain the cross-section of U.S stock returns. Especially during 
bad-states of the world we find a near-perfect relation between (downside) risk and 
return. Further, conditional downside risk (1) explains average returns within the 
size deciles, (2) is not related to distress risk and (3) can partly explain the 
momentum effect. In sum, our results provided evidence in favor of market portfolio 
efficiency, provided we account for conditional downside risk. 

Our results reflect the asymmetry of the return distribution of common stocks, 
especially during bad states-of-the-world. Further research could investigate the 
sources of asymmetry, such as financial and operational leverage. Also, it would be 
interesting to extend our analysis to other securities with asymmetric distributions, 
such as bonds, derivatives and securities with embedded options. We expect the case 
in favor of the MS CAPM to be even stronger for such securities than it is for common 
stocks. 
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Appendix 4.1 
 
This appendix discusses a pitfall in modeling downside risk: the asymmetric response 
model (ARM) of Harlow and Rao (1989, Section III) generally does not estimate the 
lower partial moment (LPM) beta. 
 Using our notation, Harlow and Rao (1989, Eq. 10) employ the following 
bivariate regression model to estimate the downside beta: 
 

 ++= xr iARMiARMi ,, βα iiARM z εγ +,     (A.4.1) 

 
where )][][( 1−

+++− +≡ δδδδ ErErx MM , )][][( 1−
++++ −≡ δδδδ ErErz MM , )0(1 ≤≡− Mrδ  and 

)0(1 >≡+ Mrδ . By taking the expectation of both sides of (A.4.1) and assuming 

0, =iARMα , we arrive at the following risk-return relationship: 

 
 [ ] [ ]MiARMi rErE ,β=      (A.4.2) 

 
Since x and z are independent by construction, the ARM beta equals the univariate 
regression coefficient for x: 
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This regression coefficient generally is not the second-order co-lower partial moment 
or the LPM beta (Harlow and Rao (1989, Eq. 9)): 
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which enters in the MS CAPM equilibrium equation: 
 

 [ ] [ ]MiLPMi rErE ,β=      (A.4.5) 

 
To show that the ARM beta generally differs from the LPM beta, it is useful to 
consider the case where the betas are identical. In this case, we can substitute 
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iLPMiARM ,, ββ = , ][][ 2
, −− = δβδ MiLPMiM rErrE  (from (A.4)) and [ ]MiLPMi rErE ,][ β=  (from 

(A.4.2) and iLPMiARM ,, ββ = ) in the numerator of the right-hand side of (A.4.3) to find 
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Equality (A.4.6) generally does not hold and hence the ARM beta iARM ,β  generally 

differs from the LPM beta iLPM ,β . Therefore, the ARM alpha iARM ,α  generally also 

differs from the LPM alpha ][][ ,, MiLPMiiLPM rErE βα −≡  (which is zero in MS CAPM 

equilibrium).  
 
Numerical example 
The differences between the two betas ( iARM ,β  and iLPM ,β ) can be demonstrated by 

means of the following simple example with three assets and three states-of-the-
world of equal probability: 
 

State Prob. Market (M) Stock 1 Stock 2 Stock 3 
1 1/3 -2.0% -1.6% -1.0% -3.0% 
2 1/3 -1.0% -0.8% -2.0% -1.0% 
3 1/3 +6.0% +4.8% +5.4% +8.2% 

iLPM ,β   +1.00 +0.80 +0.80 +1.40 

iARM ,β   +1.00 +0.80 +0.89 +1.37 

iLPM ,α   0% 0% 0% 0% 

iARM ,α   0% 0% -0.09% +0.03% 

 
Stock 1 is constructed to satisfy (A.4.6) and hence the two betas are identical in this 
case. Stock 2 and 3 are constructed to show the differences between the ARM results 
and the LPM results. The ARM model overestimates the LPM beta and 



Conditional downside risk  105 

underestimates the LPM alpha for Stock 2 and underestimates the LPM beta and 
overestimates the LPM alpha for Stock 3. 
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Chapter 5 

Conclusions 

In this thesis, we document the empirical performance of the CAPM and consider risk 
measures other than variance to better explain stock prices. The research contributes 
to the empirical asset pricing literature and the literature on downside risk. Few 
empirical asset pricing studies are devoted to downside risk, arguably due to 
empirical and methodological hurdles. This thesis offers a downside risk explanation 
for the cross-section of stock returns. 
 The mean-variance (MV) criterion of the CAPM has some important 
shortcomings. For example, a stock is classified as more risky if it goes up faster than 
the market and goes down in tandem with the market. Downside risk measures are 
intuitively appealing because they put more emphasis on downside stock movements. 
These alternative risk measures may better describe investor’s preferences. In 
general, the MV-criterion violates one or more elementary regularity conditions such 
as nonsatiation and decreasing absolute risk aversion. In our analysis, we try to 
adhere to the regularity conditions, and therefore replace variance by other measures 
of risk. 

In order to impose these regularity conditions we phrase our research in the 
pricing kernel framework. This framework is currently popular because it embeds a 
broad range of risk-based asset pricing models. The parametric tests are cast in a 
GMM framework to control for the serial correlation and heteroskedasticity effects 
that typically plague empirical tests of asset pricing models. Due to methodological 
advances it is now possible to study a wide class of downside risk measures without 
having to put parametric structure on the model in advance. We place restrictions on 
the kernel parameters in order to find well-behaved pricing kernels only.  
 We pay special attention to several important empirical issues that are typical 
for asset pricing tests: the data selection criteria, portfolio formation procedures, the 
sample period and type of benchmark portfolios. Each of these issues may materially 
affect the test results. For example, the exclusion of small caps and inclusion of the 
pre-1963 period in the analysis tends to diminish the value effect. Further, several 
macro-economic variables can be used to capture the time-varying aspect of risk and 
risk preferences. Due to differences in the empirical research design, many findings 
reported in the literature are not readily comparable. Therefore, we impose identical 
data requirements, consider a broad range of cross-sectional effects, control for size 
and consider a long sample period. Furthermore, we employ several conditional 
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variables and perform subsample and rolling window analyses, so as to asses the 
robustness of the results. 
 The conclusions laid down in this thesis are threefold. First, most of the 
empirical evidence against the CAPM is concentrated in the illiquid small-cap market 
segment in the post-1963 period. Well-known multi-factor models often do not help to 
explain the returns on large caps and ‘neutral’ benchmark sets such as beta or 
industry portfolios. Second, without short-selling, the market is third-order stochastic 
dominance efficient relative to portfolios sorted on size, value and momentum. This 
non-parametric finding suggests that systematic downside risk can help to explain 
MV-inefficiency of the stock market portfolio. Especially during the 1970s and early 
1980s, the tail betas of small, value, winner stocks are much higher than their 
regular betas. Third, the mean-semivariance CAPM, which assigns greater 
importance to downside volatility, better explains stock returns than the traditional 
MV-CAPM. If stocks are sorted into portfolios based on downside beta instead of 
regular beta, then the empirical risk-return relation improves. Especially during 
economic recession periods, the risk-return relation is near-perfect. Combined these 
results suggest that downside risk helps to better understand stock prices. 

Some issues are left for further research. First, due to an increase in stock 
return correlations during bear markets it is much more difficult to diversify away 
downside risk than upside potential. It would be interesting to find out the economic 
forces behind this empirical pattern. Second, the development of new stochastic 
dominance (SD) efficiency tests, such as first-order SD and conditional SD tests 
would be very useful. These tests could shed new light on the empirical performance 
of a broad class of representative investor models. Third, we expect that inclusion of 
other financial assets with embedded options (e.g. corporate bonds, or emerging 
market shares) in the analysis would further emphasize the need to move away from 
the mean-variance framework. In general, the field of empirical asset pricing is 
served by the development of large financial databases including high-quality price 
information of non-U.S and non-equity assets. Finally, it would be interesting to form 
benchmark portfolios based on a wide range of downside risk measures and in this 
way derive and ‘optimal’ risk measure.  
 



 

Nederlandse samenvatting 
(Summary in Dutch) 

Introductie 
De laatste decennia heeft het onderzoek naar de prijsvorming van effecten een aantal 
interessante ontwikkelingen doorgemaakt. Een belangrijke mijlpaal was de 
ontwikkeling van het eerste financiële prijsvormingsmodel in 1964. Dit model is 
bekend geworden onder de naam “Capital Asset Pricing Model” (CAPM) en de 
bedenkers zijn in 1990 bekroond met de Nobelprijs. Sinds die tijd heeft men veel 
vooruitgang geboekt zowel op theoretisch, methodologisch alsook empirisch gebied. 
Allereerst zijn er allerlei nieuwe theoretische inzichten opgedaan, die hebben geleid 
tot diverse generalisaties van het klassieke CAPM. Ten tweede heeft econometrisch 
onderzoek veel nieuwe methoden en technieken voortgebracht, die dankzij de 
beschikbaarheid van krachtige computers ook direct toepasbaar zijn. Ten derde zijn 
er zeer betrouwbare gegevensverzamelingen beschikbaar gekomen, die qua precisie 
en rijkdom ongeëvenaard zijn in vergelijking met de gegevens in andere economische 
disciplines. 

Het CAPM wordt nog steeds veelvuldig toegepast, ondermeer vanwege haar 
eenvoud en elegantie. Echter, onderzoek heeft ook aangetoond dat het CAPM enige 
empirische tekortkomingen kent, aangezien dit model de hoge rendementen op 
verschillende beleggingsstrategieën niet kan rationaliseren. Een mogelijke verklaring 
voor deze tekortkomingen is een foutieve definitie van het begrip risico. Het CAPM 
veronderstelt namelijk dat variantie de relevante risicomaatstaf is. Echter, onderzoek 
heeft aangetoond dat rendementen niet normaal verdeeld zijn en beleggers gevoeliger 
zijn voor neerwaartse dan voor opwaartse koersbewegingen. Daarom kunnen 
alternatieve neerwaartse risicomaatstaven, zoals semi-variantie, een betere 
beschrijving van de risicohouding van beleggers geven. 

Het doel van dit proefschrift is het grondig toetsen van het CAPM en te 
bepalen, of het loslaten van variantie als relevante risicomaatstaf kan helpen 
aandelenprijzen beter te begrijpen. In het onderzoek bouwen we voort op de nieuwste 
inzichten uit de literatuur. Het proefschrift heeft een aantal kenmerkende 
eigenschappen. Wij hechten er bijzonder belang aan, dat de risicohouding van 
beleggers voldoet aan economische basisveronderstellingen zoals onverzadigbaarheid 
en afkeer van risico. Door het gebruik van non-parametrische efficiëntie criteria 
kunnen we een bredere klasse van economisch zinvolle risicomaatstaven 
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onderzoeken. Daarnaast toetsen we voor het eerst een conditioneel neerwaarts-risico 
model. In dit proefschrift wordt veel aandacht besteed aan zowel de empirische als 
methodologische onderdelen van financieel onderzoek. De empirische analyses maken 
gebruik van de gegevensverzameling van het “Center for Research in Securities 
Prices” (CRSP); deze bevat nagenoeg geen fouten en bestrijkt een lange tijdsperiode 
(1926-2002). Het onderzoek bevat een groot aantal robuustheidsanalyses. Om risico 
nog beter te meten gebruiken wij naast verschillende bekende portefeuilles ook 
portefeuilles die zijn geformeerd op basis van systematisch neerwaarts risico. Alle 
portefeuilles gebruikt in dit proefschrift zijn publiekelijk beschikbaar via het 
Internet. Het onderzoek is opgedeeld in drie delen, waarin het CAPM en 
verschillende uitbreidingen worden getoetst. 

CAPM en multi-factor modellen 
Multi-factor modellen zijn bedoeld als antwoord op de empirische tekortkomingen 
van het CAPM. Aan het één-factor CAPM worden extra factoren toegevoegd die het 
rendement van bepaalde hedge portefeuilles weergeven. Op dit moment is het 
driefactor model (3FM) van Fama en French erg populair. Dit model identificeert 
twee hedgefactoren: kleine versus grote aandelen en waarde- versus groeiaandelen. 
Carhart voegt later ook nog een vierde factor toe, die prijsmomentum representeert. 
De keuze voor de factoren is vooral empirisch gemotiveerd en de theoretische 
interpretatie van deze modellen is niet geheel duidelijk. 
 In Hoofdstuk 2 toetsen we het CAPM en de multi-factor extensies op grondige 
wijze. In de empirische literatuur is de verklaringskracht van de verschillende 
prijsvormingsmodellen nog niet volledig en systematisch in kaart gebracht. Wij 
sorteren aandelen op basis van zes bekende karakteristieken en onderzoeken naast 
de meer recente periode 1963-2002 ook de vroege periode 1931-1962. Daarnaast 
splitsen we de aandelenmarkt op in verschillende marktsegmenten op basis van 
marktkapitalisatie. 
 Onze conclusie is dat het empirische bewijs tegen het CAPM is geconcentreerd 
in de kleinere marktsegmenten gedurende de meer recente periode. Toevoegen van 
additionele factoren helpt om de rendementen van deze aandelen in deze periode te 
rationaliseren. Er bestaan echter ook een aantal situaties waarin de extra factoren 
niet helpen of de resultaten zelfs verslechteren. Dit is het geval (1) in de vroegere 
periode, (2) voor grote aandelen en (3) voor investeringsstrategieën gebaseerd op 
marktkapitalisatie, bèta, reversal en industrie. Hoewel multi-factor modellen erg 
bruikbaar kunnen zijn voor andere doeleinden, zoals stijlanalyse van 



Summary in Dutch  111 

beleggingsfondsen, betwijfelen we of deze tot een beter begrip van aandelenprijzen 
zullen leiden. 

SD efficiëntie van de marktportefeuille 
Het ‘mean-variance’ (MV) criterium negeert het feit dat beleggers een voorkeur 
hebben voor verdelingen met een positieve scheefheid en impliceert in sommige 
gevallen een verzadigbare belegger. Daarom is het zinvol om naar alternatieve 
criteria te kijken die meer overeenstemmen met beleggerspreferenties. Het voordeel 
van het gebruik van (non-parametrische) stochastische dominantie (SD) criteria is 
dat een bredere klasse van risicomaatstaven beschouwd kan worden zonder vooraf ad 
hoc specificaties te maken. Het 3e orde SD (third-order SD, TSD) criterium komt 
overeen met het veronderstellen dat beleggers (1) meer boven minder prefereren 
(onverzadigbaar) (2) een afkeer van risico hebben en (3) een voorkeur voor positieve 
scheefheid hebben. Als aandelenrendementen normaal verdeeld zijn, dan valt het 
TSD-criterium samen met het MV-criterium. 
 In Hoofdstuk 3 vervangen wij het MV criterium door het 3e orde SD criterium 
en toetsen we de marktportefeuille op MV en TSD efficiëntie. Anders dan 
standaardtoetsen veronderstellen wij dat beleggers niet ‘short’ kunnen gaan; de 
portefeuillegewichten moeten positief zijn. Wij gebruiken de bekende 
aandelenportefeuilles gesorteerd op marktkapitalisatie, boekwaarde/marktwaarde en 
prijsmomentum van French, Titman en Carhart. Het is algemeen bekend dat de 
marktportefeuille MV inefficiënt is ten opzichte van deze portefeuilles. 
 De centrale bevinding is dat de marktportefeuille wel TSD efficiënt is ten 
opzichte van al deze portefeuilles. Vooral gedurende de jaren ‘70 en in het begin van 
de jaren ‘80 blijkt er een groot verschil tussen beide efficiëntiecriteria te bestaan. Dit 
betekent dat de hoge rendementen op deze bekende beleggingsstrategieën verklaard 
kunnen worden door een hoger (neerwaarts) risico. Bij bestudering van de impliciete 
risicohouding blijkt dat er sprake is van een sterke afkeer van beurskrachs.  

Conditioneel neerwaarts risico 
Een belangrijke tekortkoming van variantie is dat zij een aandeel als risicovol 
classificeert, wanneer dit aandeel harder omhoog gaat dan de markt. Het is daarom 
zinvol om variantie door semi-variantie te vervangen. Het ‘mean-semivariance’ (MS) 
CAPM verwisselt de standaard bèta door neerwaartse bèta als enige risicofactor. 
Ondanks haar theoretische aantrekkelijkheid is het MS model nog niet grondig en op 
juiste wijze onderzocht. 
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 Hoofdstuk 4 toetst het MS-CAPM en daarnaast ook het standaard CAPM en 
het driefactor model. In tegenstelling tot eerdere studies wordt gebruik gemaakt van 
(1) een verbeterde onderzoeksmethodologie en (2) een lange tijdsperiode, die het 
grootste deel van de 20e eeuw bestrijkt. Omdat de risicohouding van beleggers kan 
variëren gedurende de conjunctuurscyclus, voeren we ook conditionele toetsen uit die 
rekening houden met dit tijdsvariërende patroon. Naast de bekende portefeuilles 
gebruiken wij nieuwe portefeuilles, gesorteerd op neerwaartse bèta. 
 Dit onderzoek toont aan dat de verschillen in aandelenprijzen kunnen worden 
verklaard met verschillen in conditioneel neerwaarts risico. Vanwege de asymmetrie 
in de rendementsverdeling is het neerwaartse risico van aandelen met een lage 
(hoge) bèta hoger (lager). Wanneer standaard bèta door neerwaartse bèta wordt 
vervangen, verbetert hierdoor de empirisch zwakke relatie tussen risico en 
rendement. Vooral gedurende economische recessies bestaat een bijna perfect 
verband tussen risico en rendement. 

Conclusies 
In het kort presenteert dit onderzoek drie conclusies. Ten eerste, het bewijs tegen het 
CAPM blijkt geconcentreerd te zijn in de kleinere marktsegmenten in de meer 
recente periode. Daarnaast betwijfelen wij of multi-factor modellen een beter inzicht 
bieden in de prijsvorming van effecten dan het standaard CAPM. Ten tweede, 
variantie als relevante risicomaatstaf kent een aantal belangrijke theoretische en 
empirische tekortkomingen. Alternatieve risicomaatstaven, die meer 
overeenstemmen met de sterke afkeer van beleggers voor beurskrachs, kunnen de 
verschillen in aandelenrendementen beter verklaren dan variantie. Ten derde, 
beleggers blijken een grotere afkeer van neerwaarts risico te hebben tijdens 
economische recessies dan tijdens economische expansies.  
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